68 resultados para Cutting Speed


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O corte de aços por disco abrasivo é um dos processos que apresentam as melhores características de economia, eficiência e rapidez, e ainda hoje é muito utilizado no meio industrial se comparado a outros processos tradicionais de corte como o cisalhamento (tesourão), torneamento (sangramento), serragem com serras metálicas, serragem por atrito com lâminas circulares sem dentes e chama oxi-acetileno. Da literatura formal mais recente, nota-se que durante os últimos anos as máquinas para a realização dos cortes foram inovadas. Entretanto, esta atenção não foi dada à ferramenta de corte abrasiva. A falta de literatura técnica dificulta a escolha das condições de corte e da sua otimização no meio industrial. Este fato é agravado pela grande diversidade de discos abrasivos disponíveis no mercado, com diferentes qualidades e preço. As decisões sobre as condições de corte são baseadas em experiências pessoais, sem critério definido, e freqüentemente desprezam os aspectos de segurança inerentes ao processo. A concorrência estrangeira, através da globalização da economia, está obrigando as indústrias nacionais a atenderem os padrões internacionais de qualidade e desempenho. Uma forma das indústrias nacionais tornarem-se mais competitivas é através do conhecimento detalhado das operações de corte com discos abrasivos. Neste trabalho é apresentado um estudo sobre o comportamento de discos abrasivos, submetidos a diversas condições de corte. Os resultados são discutidos em função da análise da velocidade de corte, velocidade de mergulho do disco abrasivo na peça, força tangencial de corte média, tempo de corte e relação G.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A possible way for increasing the cutting tool life can be achieved by heating the workpiece in order to diminish the shear stress of material and thus decrease the machining forces. In this study, quartz electrical resistances were set around the workpiece for heating it during the turning. In the tests, heat-resistant austenitic alloy steel was used, hardenable by precipitation, mainly used in combustion engine exhaustion valves, among other special applications for industry. The results showed that in the hot machining the cutting tool life can be increased by 340% for the highest cutting speed tested and had a reduction of 205% on workpiece surface roughness, accompanied by a force decrease in relation to conventional turning. In addition, the chips formed in hot turning exhibited a stronger tendency to continuous chip formation indicating less energy spent in material removal process. Microhardness tests performed in the workpieces subsurface layers at 5 m depth revealed slightly higher values in the hot machining than in conventional, showing a tendency toward the formation of compressive residual stress into plastically deformed layer. The hot turning also showed better performance than machining using cutting fluid. Since it is possible to avoid the use of cutting fluid, this machining method can be considered better for the environment and for the human health.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The lack of research related to wood machining processes, including the milling, as well as the increased use of this material in the industrial sector, it creates a need to increase research involving these processes, as the sector is in full technological and environmental remodeling. This paper studies the process of milling wood, presenting an analysis of the effects of cutting speed on surface quality by measuring roughness. We used a forward speed three cutting speeds, two species of wood (Pinus elliottii and Eucalyptus grandis) and two milling tools (roughing and finishing) machined by milling concordant and discordant. Each condition was repeated six times, and the measurements were performed in the opposite direction and in favor of cutting tool, generating results of the parameters Ra (average roughness) totaling 144 trials with it. These results were statistically analyzed using analysis of variance and Tukey test. Finally it was concluded that there are significant differences between the results of varying roughness when cutting speeds, milling and types of machining types tested

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The technological expansion and market manufactured wood as wood paneling makes the research of processes involving this material are increasingly necessary . The present study examines the milling process MDF - fiberboard with average density endmill with helical teeth , with the analysis of the surface finish by evaluating the surface roughness ( Ra) and analysis of the power consumption . We analyzed three types of cuts in milling : concordant , discordant , and cut top . We used 5 rpm (6000 , 8000 , 10000 , 12000 and 14000 RPM) , establishing five-speed cutting, 301 , 402 ,502, 603 and 703 m / min respectively. Five forward speeds and 4, 6, 8, 10 and 12 m / min. Each condition was repeated six times , totaling 180 tests. The results of roughness were obtained from rugosimeter data and the power consumption were obtained by Hall-effect sensor . These results were statistically analyzed using analysis of variance and Tukey test . Finally it was concluded that there are few significant differences between the results themselves vary roughness when cutting speeds and feed and no major differences in power consumption . The best surface quality and lower power consumption were for cutting speed of 703 m / min . To varying forward speed , the speed of 4 m / min showed better surface quality and lower power consumption

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nickel alloys have a chemical composition with high tenor of alloy elements which are responsible for the material's mechanical and thermal properties, but also are the main causative of problems during the machining, making the process difficult. The objective of this work is the study of the machining by external cylindrical turning of the nickel based alloy Nimonic 80A, seeking the machining optimization of this alloy, seeking the best condition of lubricant fluid use, providing real increases of productivity without the need of investments in new production means. Besides, the results of this work should offer more detailed information regarding the behavior of this alloy in relation to machining by turning. The machining experiences were accomplished in a specimen of the nickel alloy, considering the machining parameters: cutting speed (75 and 90 m/min), cutting depth (0,8 mm) and feed rate (0,15 and 0,18 mm/v). The valuations were accomplished in a CNC lathe and tools with of hard metal inserts. After each stage of the turning the measures of the cutting length were accomplished, of the waste of the tools through a magnifying glass (8x) and the roughness of the specimen evaluated in each phase of the process, with the aid of a portable roughness meter. Through light optical microscopy it was possible to observe the wear of the cutting tools for each appraised condition. The roughness values, Ra and Ry, for the appraised conditions were always superiors to the theoretical values. After analysis of the results it was possible to end that, the best acting for this work strip tested it was obtained for ap=0,8mm: f=0,15mm/rev and VC=75m/min, what resulted in a larger cutting length (1811 m)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The search for materials with higher properties and characteristics (wear resistance, oxidation, corrosion, etc.) has driven research of various materials. Among the materials that are being studied with such properties and characteristics are super alloys based on nickel which has an important role in the aeronautical, automotive, marine, production of gas turbines and now in space vehicles, rocket engineering , experimental aircraft, nuclear reactors, steam-powered plants, petrochemical and many other applications because besides having all the characteristics and properties mentioned above also have an excellent performance at high temperatures. The super alloy based on nickel studied in this work is the super alloy Pyromet 31v normally used in the manufacture of exhaust valves in common engines and diesel engines of high power by cater requirements such as mechanical strength and corrosion resistance at temperatures of approximately 815 ° C. The objective of this work is to produce results to demonstrate more specific information about the real influence of coatings on cutting tools and cutting fluids in turning and thus promote the optimization of the machining of these alloys. The super alloy Pyromet 31v was processed through turning, being performed with various machining parameters such as cutting speed, feed rate, depth in conditions of Minimum Amount of Fluid (MAF), abundant fluid, cutting tools with coating and without coating in early in his work life and with wear. After turning were obtained several samples of chips and the part generated during the machining process, was measured roughness of the material, subsequently made macrostructural analysis of the tools used order to detect possible wear and microstructural analysis of samples collected being that the latter was used for Optical Microscopy, Scanning Electron Microscopy (SEM) and ... (Complete abstract click electronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The process of milling wood is widely used in operations such as planing and manufacturing frames . Machines like planers , desengrossadeiras , routers , moldureiras and machining centers employ the milling process for cutting wood . In this work the process of milling CNC machining center of Eucalyptus grandis was studied because this is very much used in furniture , but without consistent studies on this process . This work a CNC machining center brand TECH Z1 for analysis of surface quality ( Ra ) in relation to the variation of cutting speed and feed in concordant and discordant tangential milling and face milling was used . We used Eucalyptus grandis . Four forward speeds ( 3, 5 , 7, and 9 m / min ) for four shear rates ( 5,9; 8,4; 10,9 and 13,4 m/s ) were used. Was used for testing a cutter finishing top speed steel with helical teeth 16mm in diameter . 6 repetitions for each test condition were performed . From the results it was observed that the best results for roughness Vc = 10,9 m / s were obtained for the milling concordant with the forward speed Vf = 7 m / min. As for Vf = 5 m / min the best finish was achieved with Vc = 8,4 m /s in discordant for milling . The feedrate and cutting influenced the roughness . The senses of concordant and discordant and cut the top and the top had a significant difference in roughness

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently, the competition between organizations in the pursuit of consumer preference has become increasingly fierce. In addition, consumers have become increasingly demanding due to high speed with which innovations occur, leaving the companies meet and sometimes surpass those expectations In this context, there is the necessity to use methods as mathematical models capable of dealing with the optimization of multiple responses simultaneously. In this context, this study presents an application of techniques of Design of Experiment in a machining process of a NIMONIC 80 alloy, a “superalloy” that has thermal and mechanical properties that make its machining difficult and in order to do this, the Desirability Function was used. As they are determining conditions in the machining capability of the alloy, the roughness and the cutting length were considered as variable settings, and the factors that can influence them are cutting speed, feed rate, cutting depth, inserts type and lubrication. The analysis of the result pointed out how was the influence of all factors on each response and also showed the efficiency and reliability of the method

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to the rapid development of some species such as pine and eucalyptus and a growing demand for raw materials, timber, there was a need for detailed studies to better use and higher quality in products derived from wood. In order to contribute to to better utilization of wood ,this study aims to analyze the quality of the wood surface after machining Corymbia citrodora around, with varying feed rates (40, 70, 100 mm/mim), shear rate (1.88, 2.19, 2.51 m/s) and with the use of inserts for turning new and used (cemented carbide). 18 were used bodies and each body was made three different assays for each test were a total of 54 tests three replicates. This study will also addres the analysis of power consumption for each of the tests. With the results obtained through experiments, including the surface roughness of parts and power consumption for each test, we try to evaluate the power consumption in machining with the variations in cutting speed and feed, with two tools carbide

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Delivering to the customers a product or service with the expected quality associated to the huge competitiveness that exists in the market nowadays, has been making organizations increasingly focus on quality planning using techniques which are directed towards the continuous improvement process and production optimization. Thus, this paper aims to improve a machining process using the techniques of experimental design to the optimization and this also includes the analysis of the measurement system. For this purpose, the alloy Nimonic 80A, a nickel base superalloy, was used in the process due to its widespread use for high temperatures, applying this study the robust method proposed by Genichi Taguchi, determining the influence of the factors considered input variables, cutting speed, feed rate, depth of cut, type of tool, lubrication, and material hardness, in the output or response variable, surface roughness, concluding with the use of Taguchi orthogonal array L16 and by analysis of ANOVA that the factor feed rate is significant and offers greater effect on the response variable studied, should be set to 0,12mm/rev. Moreover, the factor type of tool has more influence on the process when compared to other factors, being CP250 the one more suitable to the process. Lastly, the interaction feed rate x cutting speed provides greater significance in the process regarding to surface roughness variable, being the best match between them 0,12mm/rev to the feed rate and 90m/min to the cutting speed. In order to evaluate the measurement system, it was applied the repeatability and reproducibility method (R&R), through which we saw that the system needs improvement (R & R = 88.04% >>> 30%) as the value found in the study was well above compared to the one that classifies the system as inappropriate

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The machining of super alloys resistant to high temperatures such as nickel alloys, inconel 718 specifically, is a very difficult job to obtain improvements in the process, due to the difficulty of machining at high cutting speeds, the use of these alloys in industries showed great developments in recent years, its application in aeronautical industry spread being used in vane turbo, compressor parts, props and set elements. The automotive, chemical, medical and others also took advantage of the great features of inconel 718 and has used the material. The high temperature resistant alloys have high machining difficulty, a fact that is associated with high cutting forces generated during machining which result in high temperatures. High levels of temperatures can cause deterioration of the cutting edge, with subsequent deformation or breakage, wear most common obtained in machining such materials are flank wear the formation of built-up edge for cutting and notch wear. The experimental part of the work consists in machining of nickel-based alloy Inconel 718 heat treated for hardness, using a tool based ceramic silicon nitride Sandvik (Si3N4) in order to compare the best results obtained in the master's thesis of SANTOS (2010) who used a tool ceramics also the basis of silicon nitride which was developed in the doctoral thesis of SOUZA (2005). Assays were performed on a CNC lathe and was noted for each cutting edge results obtained. Tests were made starting from an initial condition of the tool with cutting speed of 200 m/min, feed 0.5 mm and 0.5 mm depth of cut was reduced cutting speed for the subsequent tests with the same conditions of feed and depth of cut. The tool presented wear instant under two 200 m/min and 100 m/min, premature rupture of 50 m/min and finally cut provided with difficulty... (Complete abstract click electronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atualmente, atender as necessidades dos consumidores é uma das metas mais importantes, os consumidores estão em busca de produtos com qualidade e preços mais acessíveis, para isso, é indispensável que as empresas se atualizem para melhorar seus produtos e serviços. Com este cenário, as superligas estão cada vez mais ganhando mercado, pois possuem ótimas propriedades, principalmente em relação a operar em temperaturas elevadas, podendo proporcionar maior eficiência para motores que necessitam trabalhar em altas temperaturas. Em contra partida a essa vantagem, as superligas possuem uma baixa usinabilidade, sendo importante a análise do processo de usinagem para se tornarem mais aplicáveis. Este trabalho visa à otimização do processo de torneamento cilíndrico da superliga Nimonic 80A, com o intuito de melhorar a qualidade do produto, utilizando o Método de Taguchi, com o arranjo ortogonal L16, sendo o comprimento de corte definido como variável resposta e analisados seis fatores que poderiam influenciar na sua variação, tais fatores são: velocidade de corte, avanço, profundidade de corte, tipo de pastilha, lubrificação e dureza do material. Os resultados obtidos demonstraram que os fatores avanço, tipo de pastilha e lubrificação são significativos e exercem influencia no processo, sendo que o avanço deve ser ajustado no nível de 0,12 mm/rev, a pastilha a ser utilizada deve ser CP250 e a lubrificação deve ser feita de maneira abundante, para a otimização do processo. Com a análise dos resultados, também podemos observar a eficiência e confiabilidade do método utilizado, mostrando resultados coerentes