63 resultados para Course of action experience
Resumo:
This paper describes the voltammetric behavior of primaquine as a previous support to the further understanding of the delivery and action mechanisms of its respective synthesized prodrugs. There are few papers describing the drug behavior and most of the time no correlation between oxidation process and pH is done. Our results showed that primaquine oxidation is a one-step reaction involving two electrons with the charge transfer process being strongly pH-dependent in acid medium and pH-independent in a weak basic medium, with the neutral form being easily oxidized.This leads to the conclusion that quinoline nitrogen ring neutralization is a determinant step to the formation of the oxidized primaquine form. The existence of a relationship between the primaquine dissociation equilibrium and its electrooxidation process is shown.This work points the importance of voltammetric methodology as a tool for further studies on quantitative relationship studies between chemical structure and biological activity (QSAR) for electroactive drugs. (C) 2000 Elsevier B.V. S.A. All rights reserved.
Resumo:
The effect of dialysable leukocyte extracts (DLE) obtained from hamsters immunized with Paracoccidioides brasiliensis (immune DLE) and from non-immunized hamsters (non-immune DLE) was studied in hamsters inoculated with P. brasiliensis by the intratesticular route. Treatment with immune or non-immune DLE was started during the third week of infection and was repeated at 7, 11, 15 and 19 weeks. A group of untreated infected animals was used as control. Animals were submitted to the delayed hypersensitivity skin test to P. brasiliensis antigen (PbAg) in vivo and assayed in vitro by the macrophage migration inhibition test in the presence of Phytohemagglutinin (PHA) and PbAg and by immunodiffusion for specific antibody. The animals were sacrificed at 4, 8, 12, 16 and 20 weeks. The morphology and extension of the lesions were studied at the inoculation site, and in lymph nodes, lungs, liver, spleen and kidneys. In contrast to the controls, animals treated with both DLEs maintained a positive cell-mediated immune response throughout the experiment and developed less extensive infection with a significantly lower number of fungi in the lesions. The results suggest that immune and non-immune DLE preparations modified the evolution of experimental paracoccidioidomycosis with equal efficiency. This similarity may be explained by the immunoregulatory activities of both extracts.
Resumo:
The objective of the present investigation was to determine the course of maternal blood glucose levels in pregnant rats and its repercussions on the glucose levels and pancreas of their newborn pups. Diabetes was induced by alloxan (42 mg/kg body weight) and streptozotocin (40 mg/kg). Sixty-two pregnant Wistar rats weighing 180 to 250 g were divided into a control group and two groups with moderate (120 to 200 mg/dl glucose) and severe diabetes (greater than 200 mg/dl glucose), respectively. Blood glucose levels were measured in the dams on the 1st, 14th, and 21st days of pregnancy and in the pups at birth. The results were pooled for each litter. The fetal pancreases were removed after cesarian section performed on the 21st day of pregnancy, pooled for each litter and processed for histopathologic examination by light microscopy. Maternal blood glucose levels were significantly increased compared with the first day of pregnancy in both normal and diabetic rats starting on the 14th day of pregnancy. Fetal blood glucose levels correlated with maternal levels. The histopathologic changes characterized by vacuolization and basophilia of the cytoplasm of endocrine pancreas of newborn pups from darns with moderate or severe diabetes suggested pancreatic hyperactivity.
Resumo:
Photosynthesis is the single most important source of 02 and organic chemical energy necessary to support all non-autotrophic life forms. Plants compartmentalize this elaborate biochemical process within chloroplasts in order to safely harness the power of solar energy and convert it into usable chemical units. Stresses (biotic or abiotic) that challenge the integrity of the plant cell are likely to affect photosynthesis and alter chlorophyll fluorescence. A simple three-step assay was developed to test selected herbicides representative of the known herbicide mechanisms of action and a number of natural phytotoxins to determine their effect on photosynthesis as measured by chlorophyll fluorescence. The most active compounds were those interacting directly with photosynthesis (inhibitors of photosystem I and II), those inhibiting carotenoid synthesis, and those with mechanisms of action generating reactive oxygen species and lipid peroxidation (uncouplers and inhibitors of protoporphyrinogen oxidase). Other active compounds targeted lipids (very-long-chain fatty acid synthase and removal of cuticular waxes). Therefore, induced chlorophyll fluorescence is a good biomarker to help identify certain herbicide modes of action and their dependence on light for bioactivity. Published by Elsevier B.V.
Resumo:
The role of superoxide in adriamycin-induced nephropathy (single dose; i.v. 3 mg/kg) has been studied by blocking superoxide synthesis through the administration of allopurinol (500 mg/L in drinking water). In Experiment I (EI), allopurinol administration was started 3 days prior to nephropathy induction and continued until day 14. In Experiment II (EII) allopurinol administration was started 2 weeks after nephropathy induction and was maintained until the end of the experiment (26 weeks). Affected glomeruli frequency and tubulointerstitial lesion index (TILI) were determined at Weeks 2 and 4 (EI) and Week 26 (EII). In EI, and 24 h mean proteinuria in the nephrotic control group (NCG-I) differed from that of the treated nephrotic group (TNG-I) at Week 1 (TNG = 33.3 ± 6.39 mg/24 h; NCG = 59.8 ± 6.3 mg/24 h; p < 0.05) and 2 (NCG-I = 80.0 ± 17.5 mg/24h; TNG-I = 49.1 ± 8.4 mg/24 h; p < 0.05). No glomerular alterations were observed and TILI medians were not different in both nephrotic groups at week 2 (NCG-I = 1+: TNG = 1+) and 4 (NCG = 4+; TNG = 4+). In EII, NCG-II and TNG-II presented different 24 h proteinuria values only at Week 6, (136.91 ± 22.23 mg/24 h ad 72.66 ± 10.72 mg/24 h, respectively; p < 0.05). Between nephrotic groups, there was no statistical difference in the median of affected glomeruli (CNG-II = 56%; TNG-II = 48% and TILI (NCG-II = 8+; TNG-II = 9+). Thus, allopurinol was associated with a transient reduction in proteinuria and it did not alter the progression of the nephropathy.
Resumo:
The course of systemic lupus erythematosus (SLE), an autoimmune disease, is markedly affected by hormones such as estrogen and prolactin. It is well known that heavy exposure to sunlight has deleterious effects on SLE, triggering episodes of the disease. Classical explanations for this occurrence suggest that UV radiation damages DNA, which becomes immunogenic, or induces exposure of the Ro antigen in keratinocytes. In recent years, it has been shown that vitamin D3 has important effects on the immune system. Thus, we proposed an alternative hypothesis, suggesting that UV radiation, by promoting vitamin D3 synthesis, could be a factor aggravating the course of SLE after exposure to sunlight. To test this hypothesis, we injected F1(NZBxW) mice, which are prone to developing SLE, with vitamin D3, and we demonstrated a worsening of the histopathological findings in the kidney. (C) 2000 Wiley-Liss, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The pyrH-encoded uridine 5′-monophosphate kinase (UMPK) is involved in both de novo and salvage synthesis of DNA and RNA precursors. Here we describe Mycobacterium tuberculosis UMPK (MtUMPK) cloning and expression in Escherichia coli. N-terminal amino acid sequencing and electrospray ionization mass spectrometry analyses confirmed the identity of homogeneous MtUMPK. MtUMPK catalyzed the phosphorylation of UMP to UDP, using ATP-Mg 2+ as phosphate donor. Size exclusion chromatography showed that the protein is a homotetramer. Kinetic studies revealed that MtUMPK exhibits cooperative kinetics towards ATP and undergoes allosteric regulation. GTP and UTP are, respectively, positive and negative effectors, maintaining the balance of purine versus pyrimidine synthesis. Initial velocity studies and substrate(s) binding measured by isothermal titration calorimetry suggested that catalysis proceeds by a sequential ordered mechanism, in which ATP binds first followed by UMP binding, and release of products is random. As MtUMPK does not resemble its eukaryotic counterparts, specific inhibitors could be designed to be tested as antitubercular agents. © 2010 Elsevier Inc. All rights reserved.
Resumo:
Fluoride was introduced into dentistry over 70 years ago, and it is now recognized as the main factor responsible for the dramatic decline in caries prevalence that has been observed worldwide. However, excessive fluoride intake during the period of tooth development can cause dental fluorosis. In order that the maximum benefits of fluoride for caries control can be achieved with the minimum risk of side effects, it is necessary to have a profound understanding of the mechanisms by which fluoride promotes caries control. In the 1980s, it was established that fluoride controls caries mainly through its topical effect. Fluoride present in low, sustained concentrations (sub-ppm range) in the oral fluids during an acidic challenge is able to absorb to the surface of the apatite crystals, inhibiting demineralization. When the pH is re-established, traces of fluoride in solution will make it highly supersaturated with respect to fluorhydroxyapatite, which will speed up the process of remineralization. The mineral formed under the nucleating action of the partially dissolved minerals will then preferentially include fluoride and exclude carbonate, rendering the enamel more resistant to future acidic challenges. Topical fluoride can also provide antimicrobial action. Fluoride concentrations as found in dental plaque have biological activity on critical virulence factors of S. mutans in vitro, such as acid production and glucan synthesis, but the in vivo implications of this are still not clear. Evidence also supports fluoride's systemic mechanism of caries inhibition in pit and fissure surfaces of permanent first molars when it is incorporated into these teeth pre-eruptively. © 2011 S. Karger AG, Basel.
Resumo:
Polyphenols are present in foods and beverages and are related to sensorial qualities such as color, bitterness, and astringency, which are relevant in wine, tea, grape juice, and other products. These compounds occur naturally in forms varying from simple phenolic acids to complex polymerized tannins. Thus, it is reasonable to expect that grape-derived products elaborated in the presence of skins and seeds, such as wine and grape juice, are natural sources of flavonoids in the diet. Carcinogenesis is a multistep process that is characterized by genetic, epigenetic, and phenotypic changes. With increasing knowledge of these mechanisms, and the conclusion that most cases of cancer are preventable, efforts have focused on identifying the agents with potential anticancer properties. The use of grape polyphenols against the carcinogenesis process seems to be a suitable alternative for either prevention and/or therapeutic purposes. The aim of this article is to show the molecular data generated from the use of grape polyphenols against carcinogenesis using in vivo and in vitro test systems. © Mary Ann Liebert, Inc. and Korean Society of Food Science and Nutrition.
Resumo:
Tuberculosis remains as one of the main cause of mortality worldwide due to a single infectious agent, Mycobacterium tuberculosis. The aroK-encoded M. tuberculosis Shikimate Kinase (MtSK), shown to be essential for survival of bacilli, catalyzes the phosphoryl transfer from ATP to the carbon-3 hydroxyl group of shikimate (SKH), yielding shikimate-3-phosphate and ADP. Here we present purification to homogeneity, and oligomeric state determination of recombinant MtSK. Biochemical and biophysical data suggest that the chemical reaction catalyzed by monomeric MtSK follows a rapid-equilibrium random order of substrate binding, and ordered product release. Isothermal titration calorimetry (ITC) for binding of ligands to MtSK provided thermodynamic signatures of non-covalent interactions to each process. A comparison of steady-state kinetics parameters and equilibrium dissociation constant value determined by ITC showed that ATP binding does not increase the affinity of MtSK for SKH. We suggest that MtSK would more appropriately be described as an aroL-encoded type II shikimate kinase. Our manuscript also gives thermodynamic description of SKH binding to MtSK and data for the number of protons exchanged during this bimolecular interaction. The negative value for the change in constant pressure heat capacity (ΔCp) and molecular homology model building suggest a pronounced contribution of desolvation of non-polar groups upon binary complex formation. Thermodynamic parameters were deconvoluted into hydrophobic and vibrational contributions upon MtSK:SKH binary complex formation. Data for the number of protons exchanged during this bimolecular interaction are interpreted in light of a structural model to try to propose the likely amino acid side chains that are the proton donors to bulk solvent following MtSK:SKH complex formation. © 2013 Rosado et al.