40 resultados para Convolutional codes over finite rings


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We carry out a numerical and analytic analysis of the Yang-Lee zeros of the ID Blume-Capel model with periodic boundary conditions and its generalization on Feynman diagrams for which we include sums over all connected and nonconnected rings for a given number of spins. In both cases, for a specific range of the parameters, the zeros originally on the unit circle are shown to depart from it as we increase the temperature beyond some limit. The curve of zeros can bifurcate- and become two disjoint arcs as in the 2D case. We also show that in the thermodynamic limit the zeros of both Blume-Capel models on the static (connected ring) and on the dynamical (Feynman diagrams) lattice tend to overlap. In the special case of the 1D Ising model on Feynman diagrams we can prove for arbitrary number of spins that the Yang-Lee zeros must be on the unit circle. The proof is based on a property of the zeros of Legendre polynomials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, minimum and non-minimum delay perfect codes were proposed for any channel of dimension n. Their construction appears in the literature as a subset of cyclic division algebras over Q(zeta(3)) only for the dimension n = 2(s)n(1), where s is an element of {0,1}, n(1) is odd and the signal constellations are isomorphic to Z[zeta(3)](n) In this work, we propose an innovative methodology to extend the construction of minimum and non-minimum delay perfect codes as a subset of cyclic division algebras over Q(zeta(3)), where the signal constellations are isomorphic to the hexagonal A(2)(n)-rotated lattice, for any channel of any dimension n such that gcd(n,3) = 1. (C) 2012 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The applications of the Finite Element Method (FEM) for three-dimensional domains are already well documented in the framework of Computational Electromagnetics. However, despite the power and reliability of this technique for solving partial differential equations, there are only a few examples of open source codes available and dedicated to the solid modeling and automatic constrained tetrahedralization, which are the most time consuming steps in a typical three-dimensional FEM simulation. Besides, these open source codes are usually developed separately by distinct software teams, and even under conflicting specifications. In this paper, we describe an experiment of open source code integration for solid modeling and automatic mesh generation. The integration strategy and techniques are discussed, and examples and performance results are given, specially for complicated and irregular volumes which are not simply connected. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we propose an innovative methodology to extend the construction of minimum and non-minimum delay perfect codes as a subset of cyclic division algebras over ℚ(ζ3), where the signal constellations are isomorphic to the hexagonal An 2 -rotated lattice, for any channel of any dimension n such that gcd{n, 3) = 1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Finite Element Method (FEM) is a way of numerical solution applied in different areas, as simulations used in studies to improve cardiac ablation procedures. For this purpose, the meshes should have the same size and histological features of the focused structures. Some methods and tools used to generate tetrahedral meshes are limited mainly by the use conditions. In this paper, the integration of Open Source Softwares is presented as an alternative to solid modeling and automatic mesh generation. To demonstrate its efficiency, the cardiac structures were considered as a first application context: atriums, ventricles, valves, arteries and pericardium. The proposed method is feasible to obtain refined meshes in an acceptable time and with the required quality for simulations using FEM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a decoding principle for Goppa codes constructed by generalized polynomials, which is based on modified Berlekamp-Massey algorithm. This algorithm corrects all errors up to the Hamming weight $t\leq 2r$, i.e., whose minimum Hamming distance is $2^{2}r+1$.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let B[X; S] be a monoid ring with any fixed finite unitary commutative ring B and is the monoid S such that b = a + 1, where a is any positive integer. In this paper we constructed cyclic codes, BCH codes, alternant codes, Goppa codes, Srivastava codes through monoid ring . For a = 1, almost all the results contained in [16] stands as a very particular case of this study.