170 resultados para Composite materials. Sisal fabric. Hybridization and mechanical properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work shows the preparation and characterization of composites obtained by mixing natural rubber (NR) and carbon black (CB) in different percentages aiming suitable mechanical properties, processability and electrical conductivity for future applications as transducers in pressure sensors. The composites NR/CB are characterized through dc conductivity, thermal analysis using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMA), thermogravimetry (TGA) and stress-strain test. The electrical conductivity changed from 10-9 to 10 Sm-1 depending on the percentage of CB in the composite. Besides, it was found a linear (and reversible) dependence of the conductivity on the applied pressure in the range from 0 to 1.6 MPa for the sample 80/20 (NR/CB wt%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between the heat of polymerization (ΔH) and activation energy (Ea) parameters, obtained by differential scanning calorimetry (DSC) and the ratio of epoxy resin to hardener of the thermosetting materials based on an organic-inorganic hybrid epoxy resin (OG) was investigated. Activation energy (Ea) and heat of polymerization (ΔH) increased with an increasing OG content, up to 70 wt%. Further increase in OG content to 80wt% reduced Ea and ΔH. Dynamic mechanical analysis indicates that the maximum cross-link density is obtained at 83 wt% OG, whereas fracture toughness and tensile modulus mechanical properties are maximized at 70 wt% OG. ©2006 Sociedade Brasileira de Química.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. To evaluate the degree of conversion (DC), flexural strength (FS) and Knoop microhardness (KHN) of direct and indirect composite resins polymerized with different curing systems. Materials and methods. Specimens of direct (Z250, 3M/Espe) and indirect (Sinfony, 3M/Espe) restorative materials were made and polymerized using two light curing units: XL2500 (3M/Espe) and Visio system (3M/Espe). Absorption spectra of both composites were obtained on a FTIR spectrometer in order to calculate the DC. FS was evaluated in a universal testing machine and surface microhardness was performed in a microhardness tester (50gf/15s). DC, FS and KHN data were submitted to two-way ANOVA and Tukey's test (α = 0.05). Results. Z250 showed higher DC, FS and KHN compared with Sinfony when the polymerization was carried out with XL2500 (p < 0.05). However, there is no statistical difference in DC between the materials when Visio was used (p > 0.05). Visio showed higher DC and KHN for Z250 and Sinfony than the values obtained using XL2500 light curing (p < 0.05). For FS, no significant difference between curing units was found (p > 0.05). Conclusion. Even though the Visio system could increase DC and KHN for some direct and indirect composites, compared with the conventional halogen curing unit, a high number of monomers did not undergo conversion during the polymerization. © 2013 Informa Healthcare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper was to evaluate the effect of hybridizing glass and curaua fibers on the mechanical properties of their composites. These composites were produced by hot compression molding, with distinct overall fiber volume fraction, being either pure curaua fiber, pure glass fiber or hybrid. The mechanical characterization was performed by tensile, flexural, short beam, Iosipescu and also nondestructive testing. From the obtained results, it was observed that the tensile strength and modulus increased with glass fiber incorporation and for higher overall fiber volume fraction (%Vf). The short beam strength increased up to %Vf of 30 vol.%, evidencing a maximum in terms of overall fiber/matrix interface and composite quality. Hybridization has been successfully applied to vegetable/synthetic fiber reinforced polyester composites in a way that the various properties responded satisfactorily to the incorporation of a third component. © 2013 Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodegradable polymers are starting to be introduced as raw materials in the food-packaging market. Nevertheless, their price is very high. Starch, a fully biodegradable and bioderived polymer is a very interesting alternative due to its very low price. However, the use of starch as the polymer matrix for the production of rigid food packaging, such as trays, is limited due to its poor mechanical properties, high hidrophilicity and high density. This work presents two strategies to overcome the poor mechanical properties of starch. First, the plasticization of starch with several amounts of glycerol to produce thermoplastic starch (TPS) and second, the production of biocomposites by reinforcing TPS with promising fibers, such as barley straw and grape waste. The mechanical properties obtained are compared with the values predicted by models used in the field of composites; law of mixtures, Kerner-Nielsen and Halpin-Tsai. To evaluate if the materials developed are suitable for the production of food-packaging trays, the TPS-based materials with better mechanical properties were compared with commercial grades of oil-based polymers, polypropylene (PP) and polyethylene-terphthalate (PET), and a biodegradable polymer, polylactic acid (PLA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fiber metal laminates (FML) offer significant improvements over current available materials for aircraft structures due to their excellent mechanical characteristics and relatively low density. Non-destructive testing techniques are being used in the characterization of composite materials. Among these, vibration testing is one of the most used tools because it allows the determination of the mechanical properties. In this work, the viscoelastic properties such as elastic (E') and viscous (E) responses were obtained for aluminum 2024 alloy; carbon fiber/epoxy; glass fiber/epoxy and their hybrids aluminum 2024 alloy/carbon fiber/epoxy and aluminum 2024 alloy/glass fiber/epoxy composites. The experimental results were compared to calculated E modulus values by using the composite micromechanics approach. For all specimens studied, the experimental values showed good agreement with the theoretical values. The damping behavior, i.e. The storage modulus and the loss factor, from the aluminum 2024 alloy and fiber epoxy composites can be used to estimate the viscoelastic response of the hybrid FML. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of thermal-shock cycles on the mechanical properties of fiber-metal laminates (FMLs) has been evaluated. FML plates were composed by two AA2024 Al sheets (1.6 mm thick) and one composite ply formed by two layers of unidirectional glass fiber epoxy prepreg and two layers of epoxy adhesive tape of glass fiber reinforced epoxy adhesive. The set was manufactured by hand layup and typical vacuum bag technique. The curing cycle was in autoclave at 125 +/- 5 degrees C for 90 min and an autoclave pressure of 400 kPa. FML coupons taken from the manufactured plate were submitted to temperature variations between -50 and +80 degrees C, with a fast transition between these temperatures. Tensile and interlaminar shear strength were evaluated on samples after 1000 and 2000 cycles, and compared to nonexposed samples. 2000 Cycles corresponds to typical C Check interval for commercial aircraft maintenance programs. It was observed that the thermal-shock cycles did not result in significant microstructural changes on the FML, particularly on the composite ply. Similarly, no appreciable effect on the mechanical properties of FML was observed by the thermal-shock cycles. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flexible piezo- and pyroelectric composite was made in the thin film form by spin coating. Lead Zirconate Titanate (PZT) ceramic powder was dispersed in a castor oil-based polyurethane (PU) matrix, providing a composite with 0-3 connectivity. The dielectric data, measured over a wide range of frequency (10(-5) Hz to 105 Hz), shows a loss peak around 100 Hz related with impurities in the polymer matrix. There is also an evidence of a peak in the range 10(-4) Hz, possibly originating from the glass transition temperature T of the polymer. The pyroelectric coefficient at 34 K is 7.0x10(-5) C(.)m(-2.)K(-1) which is higher than that of P-PVDF (1X10(-5) C(.)m(-2.)K(-1)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fios de sutura de náilon (0, 3-0 e 4-0), poliéster trançado (0, 3-0 e 4-0) e polipropileno (0, 3-0 e 4-0) de 7 marcas comercializadas no Brasil, foram submetidos a análise de diâmetro, comprimento, resistência do encastoamento, resistência à tração do fio sem nó e resistência à tração do fio com nó, segundo metodologia padronizada pela Associação Brasileira de Normas Técnicas (ABNT). Os resultados obtidos indicam que a maioria dos fios testados encontra-se dentro dos valores preconizados pela ABNT.