37 resultados para Cobalt-chromium alloys


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of bath composition and electroplating conditions on structure, morphology, and composition of amorphous Fe-Cr-P-Co deposits on AISI 1020 steel substrate, priorly plated with a thin Cu deposit, were investigated. The increase of charge density activates the inclusion of Cr in the deposit. However, above specific values of the charge density, which depend on the deposition current density, the Cr content in the deposit decreases. This Cr content decreasing is probably due to the significant hydrogen evolution with the increasing of deposition cur-rent and charge density. The effect of charge density on the content of Fe and Co is not clear. However, there is a tendency of increasing of Fe content and decreasing of Co content with the raising of current density. The Co is more easily deposited than the P, and its presence results in a more intense inhibition effect on the Cr deposition than the inhibition effect caused by P presence. Scanning electron microscope (SEM) analysis showed that Co increasing in the Fe-Cr-P-Co alloys analyzed does not promote the susceptibility to microcracks, which led to a good quality deposit. The passive film of the Fe-Cr-P-Co alloy shows a high ability formation and high protective capacity, and the results obtained by current density of corrosion, j(cor), show that the deposit with addition of Co, Fe31Cr11P28Co30, presents a higher corrosion resistance than the deposit with addition of Ni, Fe54Cr21P20Ni5. (C) 2004 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results are presented on the mechanism of passivation of Co-Cr-Mo biological implant alloys in physiological serum using open circuit potentiometry, potentiodynamic curves, and electrochemical impedance spectroscopy. The potential dependence of impedance data and the analysis of the parameters obtained indicate a progressive diminution of the initial layer thickness and the simultaneous formation of a second higher resistive layer. In more severe conditions than the existent in human body, the metallographic examination of the alloy surface shows localized corrosion in interdendritric regions. Elemental analysis of the surface reveals the presence of higher chromium content in these regions. The presence of chlorine was not detected, which suggested that during preferential attack, soluble species are also formed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lanthanum chromite (LaCrO3) is one of the most adequate materials for use as interconnector in solid oxide fuel cell (SOFC) applications, due to its intrinsic properties, namely its good electrical conductivity and resistance to environment conditions in fuel cell operations. Due to difficulties in sintering, additives are usually added to help in the densification process. In this work, the influence of added cobalt and strontium, in the sintering of LaCrO3 obtained by combustion synthesis was studied. The starting materials were respectively nitrates of chromium, lanthanum, cobalt and strontium, and urea was used as fuel. The results show that by increasing the strontium and cobalt concentrations it is possible to reduce the temperature of sintering. Using both additives, the sintering processes took place in lesser times than normally used for this material, as well as greater values of density were attained.