70 resultados para Clustering-Based Hybrid Evolutionary Algorithm, Identification, Rotor-Bearing System, Bearing Parameter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the planning of secondary distribution circuits is approached as a mixed integer nonlinear programming problem (MINLP). In order to solve this problem, a dedicated evolutionary algorithm (EA) is proposed. This algorithm uses a codification scheme, genetic operators, and control parameters, projected and managed to consider the specific characteristics of the secondary network planning. The codification scheme maps the possible solutions that satisfy the requirements in order to obtain an effective and low-cost projected system-the conductors' adequate dimensioning, load balancing among phases, and the transformer placed at the center of the secondary system loads. An effective algorithm for three-phase power flow is used as an auxiliary methodology of the EA for the calculation of the fitness function proposed for solutions of each topology. Results for two secondary distribution circuits are presented, whereas one presents radial topology and the other a weakly meshed topology. © 2005 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here a multiobjective performance index for distribution systems with distributed generation based on a steady-state analysis of the network is proposed. This index quantifies the distributed generation impact on total losses, voltage profile and short circuit currents, and will be used as objective function in an evolutionary algorithm aimed at searching the best points for connecting distributed generators. Moreover, a loss allocation technique, based on the Zbus method, is applied on the original configuration of the network to obtain a good quality initial population. An IEEE medium voltage distribution network is analysed and results are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a new method to detect damage in structures based on the electromechanical impedance principle. The system follows the variations in the output voltage of piezoelectric transducers and does not compute the impedance itself. The proposed system is portable, autonomous, versatile, and could efficiently replace commercial instruments in different structural health monitoring applications. The identification of damage is performed by simply comparing the variations of root mean square voltage from response signals of piezoelectric transducers, such as lead zirconate titanate patches bonded to the structure, obtained for different frequencies of the excitation signal. The proposed system is not limited by the sampling rate of analog-to-digital converters, dispenses Fourier transform algorithms, and does not require a computer for processing, operating autonomously. A low-cost prototype based on microcontroller and digital synthesizer was built, and experiments were carried out on an aluminum structure and excellent results have been obtained. © The Author(s) 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are strong uncertainties regarding LAI dynamics in forest ecosystems in response to climate change. While empirical growth & yield models (G&YMs) provide good estimations of tree growth at the stand level on a yearly to decennial scale, process-based models (PBMs) use LAI dynamics as a key variable for enabling the accurate prediction of tree growth over short time scales. Bridging the gap between PBMs and G&YMs could improve the prediction of forest growth and, therefore, carbon, water and nutrient fluxes by combining modeling approaches at the stand level.Our study aimed to estimate monthly changes of leaf area in response to climate variations from sparse measurements of foliage area and biomass. A leaf population probabilistic model (SLCD) was designed to simulate foliage renewal. The leaf population was distributed in monthly cohorts, and the total population size was limited depending on forest age and productivity. Foliage dynamics were driven by a foliation function and the probabilities ruling leaf aging or fall. Their formulation depends on the forest environment.The model was applied to three tree species growing under contrasting climates and soil types. In tropical Brazilian evergreen broadleaf eucalypt plantations, the phenology was described using 8 parameters. A multi-objective evolutionary algorithm method (MOEA) was used to fit the model parameters on litterfall and LAI data over an entire stand rotation. Field measurements from a second eucalypt stand were used to validate the model. Seasonal LAI changes were accurately rendered for both sites (R-2 = 0.898 adjustment, R-2 = 0.698 validation). Litterfall production was correctly simulated (R-2 = 0.562, R-2 = 0.4018 validation) and may be improved by using additional validation data in future work. In two French temperate deciduous forests (beech and oak), we adapted phenological sub-modules of the CASTANEA model to simulate canopy dynamics, and SLCD was validated using LAI measurements. The phenological patterns were simulated with good accuracy in the two cases studied. However, IA/max was not accurately simulated in the beech forest, and further improvement is required.Our probabilistic approach is expected to contribute to improving predictions of LAI dynamics. The model formalism is general and suitable to broadleaf forests for a large range of ecological conditions. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os solos submetidos aos sistemas de produção sem preparo estão sujeitos à compactação, provocada pelo tráfego de máquinas, tornando necessário o acompanhamento das alterações do ambiente físico, que, quando desfavorável, restringe o crescimento radicular, podendo reduzir a produtividade das culturas. O objetivo do trabalho foi avaliar o efeito de diferentes intensidades de compactação na qualidade física de um Latossolo Vermelho textura média, localizado em Jaboticabal (SP), sob cultivo de milho, usando métodos de estatística multivariada. O delineamento experimental foi inteiramente casualizado, com seis intensidades de compactação e quatro repetições. Foram coletadas amostras indeformadas do solo nas camadas de 0,02-0,05, 0,08-0,11 e 0,15-0,18 m para determinação da densidade do solo (Ds), na camada de 0-0,20 m. As características da cultura avaliadas foram: densidade radicular, diâmetro radicular, matéria seca das raízes, altura das plantas, altura de inserção da primeira espiga, diâmetro do colmo e matéria seca das plantas. As análises de agrupamentos e componentes principais permitiram identificar três grupos de alta, média e baixa produtividade de plantas de milho, segundo variáveis do solo, do sistema radicular e da parte aérea das plantas. A classificação dos acessos em grupos foi feita por três métodos: método de agrupamentos hierárquico, método não-hierárquico k-means e análise de componentes principais. Os componentes principais evidenciaram que elevadas produtividades de milho estão correlacionadas com o bom crescimento da parte aérea das plantas, em condições de menor densidade do solo, proporcionando elevada produção de matéria seca das raízes, contudo, de pequeno diâmetro. A qualidade física do Latossolo Vermelho para o cultivo do milho foi assegurada até à densidade do solo de 1,38 Mg m-3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automotive turbochargers, which operate at very high speeds, exceeding 180,000 r/min, exhibit two strong sub-harmonic modes of vibrations due to oil-whirl instability. These are a conical mode and an in-phase whirl mode. The gyroscopic effects can be very important in such a rotor system. This article presents a theoretical investigation into these effects on the conical whirl instability of a turbocharger induced by the angular (tilting) motion of a rigid rotor. A simplified linear model is used to analyse the rotor-bearing system by investigating the effects of the gyroscopic moment on the internal moments. A gyroscopic coefficient, defined by the geometry of the rotor, is shown to govern the stability of the conical whirl motion. A threshold value of 1/2 is determined for this coefficient to suppress the conical whirl. This value remains unaffected if the rotor is asymmetric and is supported by floating ring bearings, which is the case in a practical turbocharger.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)