173 resultados para Chiral symmetry


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditional cutoff regularization schemes of the Nambu-Jona-Lasinio model limit the applicability of the model to energy-momentum scales much below the value of the regularizing cutoff. In particular, the model cannot be used to study quark matter with Fermi momenta larger than the cutoff. In the present work, an extension of the model to high temperatures and densities recently proposed by Casalbuoni, Gatto, Nardulli, and Ruggieri is used in connection with an implicit regularization scheme. This is done by making use of scaling relations of the divergent one-loop integrals that relate these integrals at different energy-momentum scales. Fixing the pion decay constant at the chiral symmetry breaking scale in the vacuum, the scaling relations predict a running coupling constant that decreases as the regularization scale increases, implementing in a schematic way the property of asymptotic freedom of quantum chromodynamics. If the regularization scale is allowed to increase with density and temperature, the coupling will decrease with density and temperature, extending in this way the applicability of the model to high densities and temperatures. These results are obtained without specifying an explicit regularization. As an illustration of the formalism, numerical results are obtained for the finite density and finite temperature quark condensate and applied to the problem of color superconductivity at high quark densities and finite temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this communication we present results of a study of chiral symmetry in quark matter using an effective Coulomb gauge QCD Hamiltonian. QCD in Coulomb gauge is convenient for a variational approach based on a quasiparticle picture for the transverse gluons, in which a confining Coulomb potential arises naturally. We show that such an effective Hamiltonian predicts chiral restoration at too low quark densities. Possible reasons for such deficiency are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe the derivation of an effective Hamiltonian which involves explicit hadron degrees of freedom and consistently combines chiral symmetry and color confinement. We use a method known as Fock-Tani (FT) representation and a quark model formulated in the context of Coulomb gauge QCD. Using this Hamiltonian, we evaluate the dissociation cross section of J/psi in collision with rho.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1/N(c) expansion in QCD (with N(c) the number of colors) suggests using a potential from meson sector (e.g., Richardson) for baryons. For light quarks a sigma-field has to be introduced to ensure chiral symmetry breaking (chi-SB). It is found that nuclear matter properties can be used to pin down the chi-SB modeling. All masses, M(N), m-sigma, m-omega, are found to scale with density. The equations are solved self-consistently.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Nolen-Schiffer anomaly is the long standing discrepancy between theory and experiment of binding energy differences of mirror nuclei. It appears that the anomaly is largely explained by the charge symmetry breaking force generated by the rho(0)-omega mixing. In this paper I discuss the effect of the rho(0)-omega mixing to the binding energy differences in relativistic models of the nucleus. I also discuss the issue of momentum dependence of rho(0)-omega mixing amplitude and present an alternative explanation of the anomaly based on the partial restoration of chiral symmetry in the nucleus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complex mass poles, or ghost poles, are present in the Hartree-Fock solution of the Schwinger-Dyson equation for the nucleon propagator in renormalizable models with Yukawa-type meson-nucleon couplings, as shown many years ago by Brown, Puff and Wilets (BPW), These ghosts violate basic theorems of quantum field theory and their origin is related to the ultraviolet behavior of the model interactions, Recently, Krein et.al, proved that the ghosts disappear when vertex corrections are included in a self-consistent way, softening the interaction sufficiently in the ultraviolet region. In previous studies of pi N scattering using ''dressed'' nucleon propagator and bare vertices, did by Nutt and Wilets in the 70's (NW), it was found that if these poles are explicitly included, the value of the isospin-even amplitude A((+)) is satisfied within 20% at threshold. The absence of a theoretical explanation for the ghosts and the lack of chiral symmetry in these previous studies led us to re-investigate the subject using the approach of the linear sigma-model and study the interplay of low-energy theorems for pi N scattering and ghost poles. For bare interaction vertices we find that ghosts are present in this model as well and that the A((+)) value is badly described, As a first approach to remove these complex poles, we dress the vertices with phenomenological form factors and a reasonable agreement with experiment is achieved, In order to fix the two cutoff parameters, we use the A((+)) value for the chiral limit (m(pi) --> 0) and the experimental value of the isoscalar scattering length, Finally, we test our model by calculating the phase shifts for the S waves and we find a good agreement at threshold. (C) 1997 Elsevier B.V. B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The δ-expansion is a nonperturbative approach for field theoretic models which combines the techniques of perturbation theory and the variational principle. Different ways of implementing the principle of minimal sensitivity to the δ-expansion produce in general different results for observables. For illustration we use the Nambu-Jona-Lasinio model for chiral symmetry restoration at finite density and compare results with those obtained with the Hartree-Fock approximation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that the tail of the chiral two-pion exchange nucleon-nucleon potential is proportional to the pion-nucleon (πN) scalar form factor and discuss how it can be translated into effective scalar meson interactions. We then construct a kernel for the process NN → πNN, due to the exchange of two pions, which may be used in either three-body forces or pion production in NN scattering. Our final expression involves a partial cancellation among three terms, due to chiral symmetry, but the net result is still important. We also find that, at large internucleon distances, the kernel has the same spatial dependence as the central NN potential and we produce expressions relating these processes directly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We employ the Dirac-like equation for the gauge field proposed by Majorana to obtain an action that is symmetric under duality transformation. We also use the equivalence between duality and chiral symmetry in this fermionlike formulation to show how the Maxwell action can be seen as a mass term. ©2000 The American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We derive the equation of state for hot nuclear matter using the Walecka model in a non-perturbative formalism. We include here the vacuum polarization effects arising from the nucleon and scalar mesons through a realignment of the vacuum. A ground state structure with baryon-antibaryon condensates yields the results obtained through the relativistic Hartree approximation of summing baryonic tadpole diagrams. Generalization of such a state to include the quantum effects for the scalar meson fields through the σ -meson condensates amounts to summing over a class of multiloop diagrams. The techniques of the thermofield dynamics method are used for the finite-temperature and finite-density calculations. The in-medium nucleon and sigma meson masses are also calculated in a self-consistent manner. We examine the liquid-gas phase transition at low temperatures (≈ 20 MeV), as well as apply the formalism to high temperatures to examine a possible chiral symmetry restoration phase transition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the scattering of heavy-light K and D mesons by nucleons at low energies. The short-distance part of the interaction is described by quark-gluon interchange and the longdistance part is described by a one-meson-exchange model that includes the contributions of vector (ρ, ω) and scalar (σ) mesons. The microscopic quark model incorporates a confining Coulomb potential extracted from lattice QCD simulations and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The derived effective meson-nucleon potential is used in a Lippmann-Schwinger equation to obtain s-wave phase shifts. Our final aim is to set up a theoretical framework that can be extended to finite temperatures and baryon densities. © 2010 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We discuss two aspects of charmonium in medium. First, we present results of a recent study that compares the phenomenology of charmonium spectroscopy using smooth and sudden string breaking potentials. Next, we present results of a study that explores the possibility that J/ψ might be bound in a large nucleus through the excitation of a color singlet intermediate states of D and D* mesons with density masses. © 2010 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies of the structure of excited baryons are key factors to the N* program at Jefferson Lab (JLab). Within the first year of data taking with the Hall B CLAS12 detector following the 12 GeV upgrade, a dedicated experiment will aim to extract the N* electrocouplings at high photon virtualities Q 2. This experiment will allow exploration of the structure of N* resonances at the highest photon virtualities ever achieved, with a kinematic reach up to Q2 = 12 GeV2. This high-Q 2 reach will make it possible to probe the excited nucleon structures at distance scales ranging from where effective degrees of freedom, such as constituent quarks, are dominant through the transition to where nearly massless bare-quark degrees of freedom are relevant. In this document, we present a detailed description of the physics that can be addressed through N* structure studies in exclusive meson electroproduction. The discussion includes recent advances in reaction theory for extracting N* electrocouplings from meson electroproduction off protons, along with Quantum Chromodynamics (QCD)-based approaches to the theoretical interpretation of these fundamental quantities. This program will afford access to the dynamics of the nonperturbative strong interaction responsible for resonance formation, and will be crucial in understanding the nature of confinement and dynamical chiral symmetry breaking in baryons, and how excited nucleons emerge from QCD. © 2013 World Scientific Publishing Company.