49 resultados para Chemical kinetics
Resumo:
Colloidal suspensions of tin oxide nanocrystals were synthesized at room temperature by the hydrolysis reaction of tin chloride (II), in an ethanolic solution. The coarsening kinetics of such nanocrystals was studied by submitting the as-prepared suspensions to hydrothermal treatments at temperatures of 100, 150 and 200 degrees C for periods between 60 and 12,000 min. Transmission electron microscopy (TEM) was used to characterize the samples (i.e. distribution of nanocrystal size, average particle radius and morphology). The results show that the usual Ostwald ripening coarsening mechanism does not fit well the experimental data, which is an indicative that this process is not significant for SnO2 nanocrystals, in the studied experimental conditions. The morphology evolution of the nanocrystals upon hydrothermal treatment indicates that growth by oriented attachment (OA) should be significant. A kinetic model that describes OA growth is successfully applied to fit the data. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The effects of chemical pretreatment and air drying temperature on drying kinetics, shrinkage, density and rehydration ratio of grapes were determined at various moisture contents. It was observed that the chemical pretreatment employed - a solution of 2% CaCO3 with 0 to 3% ethyl oleate - increased considerably the drying rate. It was established that the shrinkage increased with drying temperature between 40 to 80 degrees C and decreased with increasing concentration of ethyl oleate in the chemical pretreatment solution.
Resumo:
A nonisothermal study of the kinetics of the nanoporosity elimination in monolithic silica xerogels, prepared from acid and ultrasound catalyzed hydrolysis of tetraethylortosilicate (TEOS), has been carried out by means of in situ linear shrinkage measurements performed with different heating rates. The study could be applied up to almost alpha similar to 0.6 of the volume fraction alpha of eliminated pores. The activation energy was found increasing from about 3.2 x 10(2) kJ/mol for alpha similar to 0.06 up to about 4.4 x 10(2) kJ/mol for alpha. similar to 0.44. The sintering process accompanying the nanopore elimination in this set of xerogels is in agreement with a viscous flux sintering process with the hydroxyl content diminishing with the volume fraction of eliminated pores. All the volume fraction of eliminated pores versus temperature (T) curves can be matched onto a unique curve with an appropriate rescaling of the T axis, independent of the heating rate. This scaling property suggests that the path of sintering seems the same, regardless of the heating rate; the difference is that the rate is faster at higher temperature.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The kinetics of the hexacyanoferrate(III)-N,N′-dimethyl-4,4′-bipyridinium radical (MV+) reaction was studied by a laser flash photolysis technique. The radical was generated, in the presence of Fe(CN)6 3-, by quenching the excited state *Ru(bpy)3 2+ with MV2+. The second-order rate constant for the Fe(CN)6 3--MV+ reaction is (7.6 ± 0.5) × 109 M-1 s-1 at 23°C and ionic strength 0.10 M. Comparison with the rate constants calculated for the diffusion-controlled reaction (4.7 × 109 M-1 s-1) and the activation-controlled reaction (5.2 × 1012 M-1 s-1, on the basis of self-exchange rate constants of 8.0 × 105 M-1 s-1 and 1.9 × 104 M-1 s-1 for the MV2+/+ and Fe(CN)6 3-/4- couples, respectively) leads to the conclusion that the Fe(CN)6 3--MV+ reaction is diffusion controlled. The rate constant for the Fe(CN)6-MV2+ reaction, calculated from the rate constant for the Fe(CN)6 3--MV+ reaction and the appropriate equilibrium constant, is 2.4 × 10-5 M-1 s-1 at 23°C and ionic strength 0.10 M. Microscopic reversibility considerations require that the Fe(CN)6 4--MV2+ reaction be controlled by the dissociation of the successor complex Fe(CN)6 3-|MV+. The thermal and optical electron transfers in the ion pair Fe(CN)6 4-|MV2+ and in related systems are analyzed and discussed. © 1982 American Chemical Society.
Resumo:
The following sequence of substitution reactions was studied spectrophotometrically in organic solvents: RNH2 + TCNQ →-HCN 7-substituted TCNQ →-HCN +RNH2 7.7-disubstituted TCNQ where R = butyl, octyl, dodecyl, and hexadecyl. The production of 7-(alkylamino)-7,7,8-tricyanoquinodimethanes proceeds via the formation of the anion radical of TCNQ (TCNQ-·) whose rate of appearance was found to be a function of the chain length of R, reaching a maximum for octylamine. The formation of TCNQ-· was sensitive to the solvent polarity and electron-donor power and was associated with a small enthalpy and a highly negative entropy of activation. Above a certain [C8H17NH2] the rate of disappearance of TCNQ-· was independent of the amine concentration, and the reaction had a much higher enthalpy and entropy of activation. The occurrence of tautomerism precluded an investigation of the conversion of 7-(octylamino)-7,8,8-tricyanoquinodimethane into 7,7-bis(octylamino)-8,8-dicyanoquinodimethane. A study of the reaction of octylamine with 7-morpholino-7,8,8-tricyanoquinodimethane (which does not exist in tautomeric forms) showed that the second substitution step proceeds with the same mechanism as the first one. The only difference between the two compounds (TCNQ and its monosubstituted morpholino derivative) is one of reactivity. © 1985 American Chemical Society.
Resumo:
The formation of calcium silicate hydrates (C-S-H) during the hydration of tricalcium silicate (C3S) in pure water and in water solutions containing 1% CaCl2 (accelerator) and 0.01% saccharose (retarder) was studied by small-angle X-ray scattering (SAXS). SAXS measurements were performed under isothermal conditions within the temperature range 25 °C T < 52 °C. The experimental results indicate that the time variation of the mass fraction of the C-S-H product phase, α(f), can be fitted, under all conditions of paste setting, by Avrami equation, α(t) = 1 -exp(-(kt)′), k being a rate parameter and n an exponent depending on the characteristics of the transformation. The parameter n is approximately equal to 2 for hydration of C^S in pure water. Depending on temperature, n varies from 2 to 2.65 for hydration in the presence of CaC^ and saccharose. The value n = 2 is theoretically expected for lateral growth of thin C-S-H plates of constant thickness. The time dependence of SAXS intensity indicates that the transformed phase (C-S-H) consists of colloidal particles in early stages of hydration, evolving by two-dimensional growth toward a disordered lamellar structure composed of very thin plates. The activation energy ΔE for the growth of C-S-H phase was determined from the time dependence of X-ray scattering intensity. These data were obtained by in situ measurements at different temperatures of hydration. The values of ΔE are 37.7, 49.4, and 44.3 kJ/mol for hydration in pure water and in water solutions containing CaCl2 and saccharose, respectively. © 2000 American Chemical Society.
Resumo:
Under biotic/abiotic stresses, the red alga Kappaphycus alvarezii reportedly releases massive amounts of H2O2 into the surrounding seawater. As an essential redox signal, the role of chloroplast-originated H2O2 in the orchestration of overall antioxidant responses in algal species has thus been questioned. This work purported to study the kinetic decay profiles of the redox-sensitive plastoquinone pool correlated to H2O2 release in seawater, parameters of oxidative lesions and antioxidant enzyme activities in the red alga Kappaphycus alvarezii under the single or combined effects of high light, low temperature, and sub-lethal doses of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which are inhibitors of the thylakoid electron transport system. Within 24 h, high light and chilling stresses distinctly affected the availability of the PQ pool for photosynthesis, following Gaussian and exponential kinetic profiles, respectively, whereas combined stimuli were mostly reflected in exponential decays. No significant correlation was found in a comparison of the PQ pool levels after 24 h with either catalase (CAT) or ascorbate peroxidase (APX) activities, although the H2O2 concentration in seawater (R = 0.673), total superoxide dismutase activity (R = 0.689), and particularly indexes of protein (R = 0.869) and lipid oxidation (R = 0.864), were moderately correlated. These data suggest that the release of H2O2 from plastids into seawater possibly impaired efficient and immediate responses of pivotal H2O2-scavenging activities of CAT and APX in the red alga K. alvarezii, culminating in short-term exacerbated levels of protein and lipid oxidation. These facts provided a molecular basis for the recognized limited resistance of the red alga K. alvarezii under unfavorable conditions, especially under chilling stress. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Samples of paint (P), reused PET (PET-R) and paint/PET-R mixtures (PPET-R) were evaluated using DSC to verify their physical-chemical properties and thermal behavior. Films from paints and PPET-R are visually similar. It was possible to establish that the maximum amount of PET-R that can be added to paint without significantly altering its filming properties is 2%. The cure process (80-203°C) was identified through DSC curves. The kinetic parameters, activation energy (E a) and Arrhenius parameters (A) for the samples containing 0.5 to 1% of PET-R, were calculated using the Flynn-Wall-Ozawa isoconversional method. It was observed that for greater amounts of PET-R added, there is a decrease in the E a values for the cure process. A Kinetic compensation effect (KCE), represented by the equation InA=-2.70+0.31E a was observed for all the samples. The most suitable kinetic model to describe this cure process is the autocatalytic Šesták-Berggreen, model applied to heterogeneous systems. © 2007 Springer Science+Business Media, LLC.
Resumo:
Apocynin is the most employed inhibitor of NADPH oxidase (NOX), a multienzymatic complex capable of catalyzing the one-electron reduction of molecular oxygen to the superoxide anion. Despite controversies about its selectivity, apocynin has been used as one of the most promising drugs in experimental models of inflammatory and neurodegenerative diseases. Here, we aimed to study the chemical and biophysical properties of apocynin. The oxidation potential was determined by cyclic voltammetry (Epa = 0.76V), the hydrophobicity index was calculated (logP = 0.83) and the molar absorption coefficient was determined (ε275nm = 1.1 × 104 M-1 cm-1). Apocynin was a weak free radical scavenger (as measured using the DPPH, peroxyl radical and nitric oxide assays) when compared to protocatechuic acid, used here as a reference antioxidant. On the other hand, apocynin was more effective than protocatechuic acid as scavenger of the non-radical species hypochlorous acid. Apocynin reacted promptly with the non-radical reactive species H2O2 only in the presence of peroxidase. This finding is relevant, since it represents a new pathway for depleting H2O2 in cellular experimental models, besides the direct inhibition of NADPH oxidase. This could be relevant for its application as an inhibitor of NOX4, since this isoform produces H 2O2 and not superoxide anion. The binding parameters calculated by fluorescence quenching showed that apocynin binds to human serum albumin (HSA) with a binding affinity of 2.19 × 104 M -1. The association did not alter the secondary and tertiary structure of HSA, as verified by synchronous fluorescence and circular dichroism. The displacement of fluorescent probes suggested that apocynin binds to site I and site II of HSA. Considering the current biomedical applications of this phytochemical, the dissemination of these chemical and biophysical properties can be very helpful for scientists and physicians interested in the use of apocynin.
Resumo:
Tuberculosis remains as one of the main cause of mortality worldwide due to a single infectious agent, Mycobacterium tuberculosis. The aroK-encoded M. tuberculosis Shikimate Kinase (MtSK), shown to be essential for survival of bacilli, catalyzes the phosphoryl transfer from ATP to the carbon-3 hydroxyl group of shikimate (SKH), yielding shikimate-3-phosphate and ADP. Here we present purification to homogeneity, and oligomeric state determination of recombinant MtSK. Biochemical and biophysical data suggest that the chemical reaction catalyzed by monomeric MtSK follows a rapid-equilibrium random order of substrate binding, and ordered product release. Isothermal titration calorimetry (ITC) for binding of ligands to MtSK provided thermodynamic signatures of non-covalent interactions to each process. A comparison of steady-state kinetics parameters and equilibrium dissociation constant value determined by ITC showed that ATP binding does not increase the affinity of MtSK for SKH. We suggest that MtSK would more appropriately be described as an aroL-encoded type II shikimate kinase. Our manuscript also gives thermodynamic description of SKH binding to MtSK and data for the number of protons exchanged during this bimolecular interaction. The negative value for the change in constant pressure heat capacity (ΔCp) and molecular homology model building suggest a pronounced contribution of desolvation of non-polar groups upon binary complex formation. Thermodynamic parameters were deconvoluted into hydrophobic and vibrational contributions upon MtSK:SKH binary complex formation. Data for the number of protons exchanged during this bimolecular interaction are interpreted in light of a structural model to try to propose the likely amino acid side chains that are the proton donors to bulk solvent following MtSK:SKH complex formation. © 2013 Rosado et al.
Resumo:
The structure and the kinetics of formation of APTS/GPTS-derived organic/inorganic hybrids were studied in situ by small-angle-X-ray scattering. The data were interpreted in terms of a process of primary particles formation and growth of mass-fractal clusters. At the very early stage, the population of the nonfractal primary particles (D = 3) increases with time. As the mass-fractal clusters appear (D < 3) as a result of the aggregation process, the radius of gyration, Rg, of the clusters increases on average. At advanced stages of aggregation, the clusters grow in a mechanism in which the number of particles per clusters increases while the number of clusters diminishes with time, in such a way that the correlation volume of the clusters, Vc, fulfills the relationship Vc â̂ R g D, in agreement with a mass-fractal character of the clusters. These results supporting a cluster-cluster aggregation process, together with the typically very low value found for the mass-fractal dimension D, are in favor of a diffusion-controlled cluster aggregation mechanism. © 2013 American Chemical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)