102 resultados para Charm in matter
Mercury Redox Chemistry in the Negro River Basin, Amazon: The Role of Organic Matter and Solar Light
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dynamics and stability of solitons in two-dimensional (2D) Bose-Einstein condensates (BEC), with one-dimensional (1D) conservative plus dissipative nonlinear optical lattices, are investigated. In the case of focusing media (with attractive atomic systems), the collapse of the wave packet is arrested by the dissipative periodic nonlinearity. The adiabatic variation of the background scattering length leads to metastable matter-wave solitons. When the atom feeding mechanism is used, a dissipative soliton can exist in focusing 2D media with 1D periodic nonlinearity. In the defocusing media (repulsive BEC case) with harmonic trap in one direction and nonlinear optical lattice in the other direction, the stable soliton can exist. Variational approach simulations are confirmed by full numerical results for the 2D Gross-Pitaevskii equation.
Resumo:
We introduce a CP trajectory diagram in bi-probability space as a powerful tool for a pictorial representation of the genuine CP and the matter effects in neutrino oscillations. The existence of correlated ambiguity in the B is uncovered. The principles of tuning the beam energy for a determination of CP-violating phase delta and the sign of Deltam(13)(2) given baseline distance are proposed to resolve the ambiguity and to maximize the CP-odd effect. We finally point out, quite contrary to what is usually believed, that the ambiguity may be resolved with similar to 50% chance in the super-JHF experiment despite its relatively short baseline of 300 km. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
We investigate dynamical effects of a bright soliton in Bose-Einstein condensed (BEC) systems with local and smooth space variations of the two-body atomic scattering length. It includes a discussion about the possible observation of a new type of standing nonlinear atomic matter wave in cigar-type traps. A rich dynamics is observed in the interaction between the soliton and an inhomogeneity. By considering an analytical time-dependent variational approach and also full numerical simulation of one-dimensional and three-dimensional Gross-Pitaevskii equations, we study processes such as trapping, reflection and transmission of the bright matter soliton due to the impurity. We also derive conditions for the collapse of the bright solitary wave, considering a quasi-one-dimensional BEC with attractive local inhomogeneity.
Resumo:
We show that there exists a duality between the local coordinates and the solutions of the Klein-Gerdon equation in curved spacetime in the same sense as in the Minkowski spacetime. However, the duality in curved spacetime does not have the same generality as in flat spacetime and it holds only if the system satisfies certain constraints. We derive these constraints and the basic equations of duality and discuss the implications in the quantum theory. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
A submodel of the so-called conformal affine Toda model coupled to the matter field (CATM) is defined such that its real Lagrangian has a positive-definite kinetic term for the Toda field and a usual kinetic term for the (Dirac) spinor field. After spontaneously broken the conformal symmetry by means of BRST analysis, we end up with an effective theory, the off-critical affine Toda model coupled to the matter (ATM). It is shown that the ATM model inherits the remarkable properties of the general CATM model such as the soliton solutions, the particle/soliton correspondence and the equivalence between the Noether and topological currents. The classical solitonic spectrum of the ATM model is also discussed. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
The sl(2) affine Toda model coupled to matter is shown to describe various features, such as the spectrum and string tension, of the low-energy effective Lagrangian of two-dimensional QCD (one flavor and N colors). The corresponding string tension is computed when the dynamical quarks are in the fundamental representation of SU(N) and in the adjoint representation of SU(2).
Resumo:
We derive the equation of state (EOS) for electrically charged neutral dense matter using the quantum hadrodynamics (QHD) model. This is carried out in a non-perturbative manner including quantum corrections for baryons through a realignment of vacuum with baryon-antibaryon condensates. This yields the results of relativistic Hartree approximation of summing over baryonic tadpole diagrams. The quantum corrections from the scalar meson is also taken into account in a similar way. This leads to a softening of the EOS for the hyperonic matter. The formalism also allows Lis to make a self-consistent calculation of the in-medium sigma meson mass. The effects of such quantum corrections on the composition of charged neutral dense matter is considered. The effect of the resulting EOS on the structure of neutron stars is also studied.
Resumo:
Chiral symmetry breaking at finite baryon density is usually discussed in the context of quark matter, i.e. a system of deconfined quarks. Many systems like stable nuclei and neutron stars however have quarks confined within nucleons. In this paper we construct a Fermi sea of three-quark nucleon clusters and investigate the change of the quark condensate as a function of baryon density. We study the effect of quark clustering on the in-medium quark condensate and compare results with the traditional approach of modeling hadronic matter in terms of a Fermi sea of deconfined quarks.
Resumo:
The problem of generation of atomic soliton trains in elongated Bose-Einstein condensates is considered in framework of Whitham theory of modulations of nonlinear waves. Complete analytical solution is presented for the case when the initial density distribution has sharp enough boundaries. In this case the process of soliton train formation can be viewed as a nonlinear Fresnel diffraction of matter waves. Theoretical predictions are compared with results of numerical simulations of one- and three-dimensional Gross-Pitaevskii equation and with experimental data on formation of Bose-Einstein bright solitons in cigar-shaped traps. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We consider a [ud](2)(s) over bar current, in the finite-density QCD sum rule approach, to investigate the scalar and vector self-energies of the recently observed pentaquark state Theta(+)(1540), propagating in nuclear matter. We find that, opposite to what was obtained for the nucleon, the vector self-energy is negative, and the scalar self-energy is positive. There is a substantial cancellation between them resulting in an attractive net self-energy of the same order as in the nucleon case. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A search for the pair production of scalar top quarks, (t) over tilde, has been performed in 360 pb(-1) of data from pp collisions at a center-of-mass energy of 1.96 TeV, collected by the D phi detector at the Fermilab Tevatron collider. The (t) over tilde decay mode considered is (t) over tilde -> c (chi) over tilde (0)(1), where (chi) over tilde (0)(1) is the lightest supersymmetric particle. The topology analyzed therefore consists of a pair of acoplanar heavy-flavor jets with missing transverse energy. The data and standard model expectation are in agreement, anda 95% C.L. exclusion domain in the (m((t) over tilde), m((chi) over tilde1)(0)) plane has been determined, extending the domain excluded by previous experiments. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
The bright matter-wave soliton propagation through a barrier with a rapidly oscillating position is investigated. The averaged-over rapid oscillations Gross-Pitaevskii equation is derived, where the effective potential has the form of a finite well. Dynamical trapping and quantum tunneling of the soliton in the effective finite well are investigated. The analytical predictions for the effective soliton dynamics is confirmed by numerical simulations of the full Gross-Pitaevskii equation.
Resumo:
Chiral-symmetry restoration is usually discussed in the context of quark matter, a system of deconfined quarks. However, many systems like stable nuclei and neutron stars have quarks confined within nucleons. In the present paper we use a Fermi sea of three-quark clusters instead of a Fermi sea of deconfined quarks to investigate the in-medium quark condensate. We find that an enhancement of the chiral breaking in clustered matter as claimed in the literature is not a consequence of the clustering but rather dependent on the microscopic model dynamics.