102 resultados para Cascaded multilevel inverter
Fluorescent lamp model based on equivalent resistances, considering the effects of dimming operation
Resumo:
This paper presents a new methodology for the determination of fluorescent lamp models based on equivalent resistances. One important feature of the proposed methodology is concerned with the inclusion of the filaments into the model, considering the effects of dimming operation on the equivalent resistances. The classical Series-Resonant Parallel-Loaded Half-Bridge inverter is used as the power stage of the ballast. Moreover, the variation of the inverter's switching frequency is the dimming technique assumed for the analyses. Results obtained with a F32T8 lamp indicate that the accuracy of the model is very satisfactory. Thus, the lamp models obtained with the proposed methodology have the potential to serve as an important tool for ballast designers, considering the necessity for evaluating the lamp/ballast compatibility, according to issues concerned to the operating conditions of the electrodes' filaments.
Resumo:
Traditional mathematical tools, like Fourier Analysis, have proven to be efficient when analyzing steady-state distortions; however, the growing utilization of electronically controlled loads and the generation of a new dynamics in industrial environments signals have suggested the need of a powerful tool to perform the analysis of non-stationary distortions, overcoming limitations of frequency techniques. Wavelet Theory provides a new approach to harmonic analysis, focusing the decomposition of a signal into non-sinusoidal components, which are translated and scaled in time, generating a time-frequency basis. The correct choice of the waveshape to be used in decomposition is very important and discussed in this work. A brief theoretical introduction on Wavelet Transform is presented and some cases (practical and simulated) are discussed. Distortions commonly found in industrial environments, such as the current waveform of a Switched-Mode Power Supply and the input phase voltage waveform of motor fed by inverter are analyzed using Wavelet Theory. Applications such as extracting the fundamental frequency of a non-sinusoidal current signal, or using the ability of compact representation to detect non-repetitive disturbances are presented.
Resumo:
This paper presents a novel isolated electronic ballast for multiple fluorescent lamps, featuring high power-factor, and high efficiency. Two stages compose this new electronic ballast, namely, a new voltage step-down isolated Sepic rectifier, and a classical resonant Half-Bridge inverter. The new isolated Sepic rectifier is obtained from a Zero-Current-Switching (ZCS) Pulse-Width-Modulated (PWM) soft-commutation cell. The average-current control technique is used in this preregulator stage in order to provide low phase displacement and low Total-Harmonic-Distortion (THD) at input current, resulting in high power-factor, and attending properly IEC 61000-3-2 standards. The resonant Half-Bridge inverter performs Zero-Voltage-Switching (ZVS), providing conditions for the obtaining of overall high efficiency. It is developed a design example for the new isolated electronic ballast rated at 200W output power, 220Vrms input voltage, 115Vdc dc link voltage, with rectifier and inverter stages operating at 50kHz. Finally, experimental results are presented in order to verify the developed analysis. The THD at input current is equal to 5.25%, for an input voltage THD equal to 1.63%, and the measured overall efficiency is about 88.25%, at rated load.
Resumo:
This paper presents a high efficiency Sepic rectifier for an electronic ballast application with multiple fluorescent lamps. The proposed Sepic rectifier is based on a Zero-Current-Switching (ZCS) Pulse-Width-Modulated (PWM) soft-commutation cell. The high power-factor of this structure is obtained using the instantaneous average-current control technique, in order to attend properly IEC61000-3-2 standards. The inverting stage of this new electronic ballast is a classical Zero-Voltage-Switching (ZVS) Half-Bridge inverter. A proper design methodology is developed for this new electronic ballast, and a design example is presented for an application with five fluorescent lamps 40W-T12 (200W output power), 220Vrms input voltage, 130Vdc dc link voltage, with rectifier and inverter stages operating at 50kHz. Experimental results are also presented. The THD at input current is equal to 6.41%, for an input voltage THD equal to 2.14%, and the measured overall efficiency is about 92.8%, at rated load.
Resumo:
An electronic ballast for multiple tubular fluorescent lamps is presented in this paper. The proposed structure features high power-factor, dimming capability, and soft-switching to the semiconductor devices operated in high frequencies. A Zero-Current-Switching - Pulse-Width-Modulated (ZCS-PWM) SEPIC converter composes the rectifying stage, controlled by the instantaneous average input current technique, performing soft-commutations and high input power factor. Regarding the inverting stage, it is composed by a classical resonant Half-Bridge converter, associated to Series Parallel-Loaded Resonant (SPLR) filters. The dimming control technique employed in this Half-Bridge inverter is based on the phase-shift in the current processed through the sets of filter + lamp. In addition, experimental results are shown in order to validate the developed analysis.
Resumo:
This paper presents an improved design methodology for the determination of the parameters used in the classical series-resonant parallel-loaded (SRPL) filter employed in the switching frequency controlled dimmable electronic ballasts. According to the analysis developed in this paper, it is possible to evaluate some important characteristics of the resonant filter during the dimming operation, such as: range of switching frequency, phase shift, and rms value of the current drained by the resonant filter + fluorescent lamp set. Experimental results are presented in order to validate the analyses developed in this paper. © 2005 IEEE.
Resumo:
The aim of this paper is to present a simple method for determining the high frequency parameters of a three-phase induction motor to be used in studies involving variable speed drives with PWM three-phase inverters, in which it is necessary to check the effects caused to the motor by the electromagnetic interference, (EMI) in the differential mode, as well as in the common mode. The motor parameters determination is generally performed in adequate laboratories using accurate instruments, such as very expensive RLC bridges. The method proposed here consists in the identification of the motor equivalent electrical circuit parameters in rated frequency and in high frequency through characteristic tests in the laboratory, together with the use of characteristic equations and curves, shown in the references to be mentioned for determining the motor high frequency parasite capacitances and also through system simulations using dedicated software, like Pspice, determining the characteristic waveforms involved in the differential and common mode phenomena, comparing and validating the procedure through published papers [01].
Resumo:
This paper is based on the analysis and implementation of a new drive system applied to refrigeration systems, complying with the restrictions imposed by the IEC standards (Harmonic/Flicker/EMI-Electromagnetic Interference restrictions), in order to obtain high efficiency, high power factor, reduced harmonic distortion in the input current and reduced electromagnetic interference, with excellent performance in temperature control of a refrigeration prototype system (automatic control, precision and high dynamic response). The proposal is replace the single-phase motor by a three-phase motor, in the conventional refrigeration system. In this way, a proper control technique can be applied, using a closed-loop (feedback control), that will allow an accurate adjustment of the desirable temperature. The proposed refrigeration prototype uses a 0.5Hp three-phase motor and an open (Belt-Drive) Bitzer IY type compressor. The input rectifier stage's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the IEC61000-3-2 standards. The digital controller for the output three-phase inverter stage has been developed using a conventional voltage-frequency control (scalar V/f control), and a simplified stator oriented Vector control, in order to verify the feasibility and performance of the proposed digital controls for continuous temperature control applied at the refrigerator prototype. ©2008 IEEE.
Resumo:
The digital image processing has been applied in several areas, especially where it is necessary use tools for feature extraction and to get patterns of the studied images. In an initial stage, the segmentation is used to separate the image in parts that represents a interest object, that may be used in a specific study. There are several methods that intends to perform such task, but is difficult to find a method that can easily adapt to different type of images, that often are very complex or specific. To resolve this problem, this project aims to presents a adaptable segmentation method, that can be applied to different type of images, providing an better segmentation. The proposed method is based in a model of automatic multilevel thresholding and considers techniques of group histogram quantization, analysis of the histogram slope percentage and calculation of maximum entropy to define the threshold. The technique was applied to segment the cell core and potential rejection of tissue in myocardial images of biopsies from cardiac transplant. The results are significant in comparison with those provided by one of the best known segmentation methods available in the literature. © 2010 IEEE.
Resumo:
This paper describes the design and development of a high input power-factor (HPF) AC to AC converter for naval applications using Permanent Magnet Generator (PMG). The proposed converter comprises an isolated three-phase uncontrolled multipulse rectification stage directly connected to a single-phase inverter stage, without the use of DC to DC intermediary stage, resulting in more simplicity for the overall circuitry, assuring robustness, reliability and reduced costs. Furthermore, the multipulse rectifier stage is capable to provide high power factor and input currents with low total harmonic distortion (THD). The output voltage of the PMG varies from 260V rms (220 Hz) to 380V rms (360 Hz), depending on load conditions. The output single-phase inverter stage was designed to operate with wide range of DC bus voltage, maintaining 120V rms, 60 Hz output. Measured total harmonic distortion for the AC output voltage represents less than 2%, at 3.6kW nominal linear load. © 2010 IEEE.
Resumo:
This paper proposes and describes a high power factor AC-AC converter for naval applications using Permanent Magnet Generator (PMG). The three-phase output voltages of the PMG vary from 260 Vrms (220 Hz) to 380 Vrms (360 Hz), depending on load conditions. The proposed converter consists of a Y-/ΔY power transformer, which provides electrical isolation between the PMG and remaining stages, and a twelve-pulse uncontrolled rectifier stage directly connected to a single-phase inverter stage, without the use of an intermediary DC-DC topology. This proposal results in more simplicity for the overall circuitry, assuring robustness, reliability and reduced costs. Furthermore, the multipulse rectifier stage is capable to provide high power factor and low total harmonic distortion for the input currents of the converter. The single-phase inverter stage was designed to operate with wide range of DC bus voltage, maintaining 120 Vrms, 60 Hz output. The control philosophy, implemented in a digital signal processor (DSP) which also contains protection routines, alows series connections between two identical converters, achieving 240 Vrms, 60 Hz total output voltage. Measured total harmonic distortion for the AC output voltage is lower than 2% and the input power factor is 0.93 at 3.6kW nominal load. © 2010 IEEE.
Resumo:
This paper presents a new methodology for the operation and control of a single-phase current-source (CS) Boost Inverter, considering that the conventional current-source inverter (CSI) has a right-half-plane (RHP) zero in its control-to-output transfer function, and this RHP zero causes the known non-minimum-phase effects. In this context, a special design with low boost inductance and a multi-loop control is developed in order to assure stable and very fast dynamics. Furthermore, the Inverter presents output voltage with very low total harmonic distortion (THD), reduced components and high power density. Therefore, this paper presents the inverter operation, the proposed control technique, and main simulation and experimental results in order to demonstrate the feasibility of the proposal. © 2010 IEEE.
Resumo:
This paper presents a briefly review, some trends and perspectives in the field of Photovoltaic energy conversion, which is considered to be the most important renewable energy source in few years, in the coming decades. The power electronics plays a fundamental role in this process, developing systems each times more competitive, efficient, reliable, and also reducing costs and reducing the payback time. Some trends are visible, which are the use of Silicon Carbide devices in PV inverters, the use of integrated inverter structures, the integration of power converters into the PV module or the use of few PV series connection, the development of thinner and more efficient solar cells. Moreover, the discussion about the necessity of MPPT and anti-island schemes are presented, mainly considering the expected growth of grid-tied applications. © 2011 IEEE.
Resumo:
This paper presents new inverter topologies based on the integration of a DC to DC Zeta or Cuk converter with a voltage source inverter (VSI). The proposed integration procedure aims to reduce the amount of components, meaning lower volume, weight and costs. In this context, new families of single-phase and three-phase integrated inverters are also presented. Therefore, considering the novelty for Zeta and Cuk integrated inverters structures, the proposed single-phase and three-phase inverters versions are analyzed for grid-tied and stand-alone applications. Furthermore, in order to demonstrate the feasibility of the proposal, the main simulation and experimental results are presented. © 2011 IEEE.
Resumo:
The aim of this work is to present a modified Space Vector Modulation (SVM) suitable for Tri-state Three-phase inverters. A standard SVM algorithm and the Tri-state PWM (Pulse Width Modulation) are presented and their concept are mixed into the novel SVM. The proposed SVM is applied to a three-phase tri-state integrated Boost inverter, intended to Photovoltaic Energy Applications. The main features for this novel SVM are validated through simulations and also by experimental tests. The obtained results prove the feasibility of the proposal. © 2011 IEEE.