66 resultados para CONTROLLABLE NANOMATERIALS
Resumo:
We present angular basis functions for the Schrödinger equation of two-electron systems in hyperspherical coordinates. By using the hyperspherical adiabatic approach, the wave functions of two-electron systems are expanded in analytical functions, which generalizes the Jacobi polynomials. We show that these functions, obtained by selecting the diagonal terms of the angular equation, allow efficient diagonalization of the Hamiltonian for all values of the hyperspherical radius. The method is applied to the determination of the 1S e energy levels of the Li + and we show that the precision can be improved in a systematic and controllable way. ©2000 The American Physical Society.
Resumo:
In the present work, nano-sized magnetic nuclei of Co have been electrodeposited onto p-Si (111). The deposition follows a mechanism of progressive nucleation and growth controlled by diffusion. MFM studies showed that the transition between magnetic domain states is strongly dependent on the size and shape of the nuclei. A critical height h0 is defined below which the nuclei presented always a single-domain configuration. The limiting lower boundary for the single-domain state calculated from the theory is quantitatively coincident with the experimental results. © 2004 Elsevier B.V. All rights reserved.
Resumo:
The problem of power system stability including the effects of a flexible alternating current transmission system (FACTS) is approached. First, the controlled series compensation is considered in the machine against infinite bar system and its effects are taken into account by means of construction of a Lyapunov function (LF). This simple system is helpful in order to understand the form the device affects dynamic and transient performance of the power system. After, the multimachine case is considered and it is shown that the single-machine results apply to multimachine systems. An energy-form Lyapunov function is derived for the power system including the FACTS device and it is used to analyse damping and synchronizing effects due to the FACTS device in single-machine as well as in multimachine power systems. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
A branch and bound algorithm is proposed to solve the [image omitted]-norm model reduction problem for continuous and discrete-time linear systems, with convergence to the global optimum in a finite time. The lower and upper bounds in the optimization procedure are described by linear matrix inequalities (LMI). Also proposed are two methods with which to reduce the convergence time of the branch and bound algorithm: the first one uses the Hankel singular values as a sufficient condition to stop the algorithm, providing to the method a fast convergence to the global optimum. The second one assumes that the reduced model is in the controllable or observable canonical form. The [image omitted]-norm of the error between the original model and the reduced model is considered. Examples illustrate the application of the proposed method.
Resumo:
Copper, zinc and nickel oxides present different properties in nanostructured form. These nanomaterials present very interesting morphologies such as urchin and flowers. This differents arquitechures can be employed in near future in several areas of applications as: nanocatalysis, nanooptoeletronic and nanomedicine.
Resumo:
This paper presents two Variable Structure Controllers (VSC) for continuous-time switched plants. It is assumed that the state vector is available for feedback. The proposed control system provides a switching rule and also the variable structure control input. The design is based on Lyapunov-Metzler (LM) inequalities and also on Strictly Positive Real (SPR) systems stability results. The definition of Lyapunov-Metzler-SPR (LMS) systems and its direct application in the design of VSC for switched systems are introduced in this paper. Two examples illustrate the design of the proposed VSC, considering a plant given by a switched system with a switched-state control law and two linear time-invariant systems, that are not controllable and also can not be stabilized with state feedback. ©2008 IEEE.
Resumo:
A simple method for designing a digital state-derivative feedback gain and a feedforward gain such that the control law is equivalent to a known and adequate state feedback and feedforward control law of a digital redesigned system is presented. It is assumed that the plant is a linear controllable, time-invariant, Single-Input (SI) or Multiple-Input (MI) system. This procedure allows the use of well-known continuous-time state feedback design methods to directly design discrete-time state-derivative feedback control systems. The state-derivative feedback can be useful, for instance, in the vibration control of mechanical systems, where the main sensors are accelerometers. One example considering the digital redesign with state-derivative feedback of a helicopter illustrates the proposed method. © 2009 IEEE.
Resumo:
The poly(furfuryl alcohol) is highly indicated to obtain advanced carbonaceous materials due mainly to its good carbon yield (around 50%) and a controllable cure reaction. In the processing of some carbonaceous materials, such as monolithic vitreous carbon, it is necessary to make sure that the material has the smallest porosity to be used in nobler applications such as heart valves and aerospace integrated systems. In this manuscript, a design of experiments was used to study the influence of viscosity, pH, and moisture in the porosity of the cured material. This study shows that the moisture exerts a significant influence on the porosity and the trend of the results lead to conclude that lower viscosity and moisture, and the use of non-neutralized poly(furfuryl alcohol) resins lead to obtain materials with better quality. © 2012 Wiley Periodicals, Inc.
Resumo:
Tissue engineering has been defined as an interdisciplinary field that applies the principles of engineering and life sciences for the development of biological substitutes to restore, maintain or improve tissue function. This area is always looking for new classes of degradable biopolymers that are biocompatible and whose activities are controllable and specific, more likely to be used as cell scaffolds, or in vitro tissue reconstruction. In this paper, we developed a novel bionanocomposite with homogeneous porous distribution and prospective natural antimicrobial properties by electrospinning technique using Stryphodedron barbatimao extract (Barbatimão). SEM images showed equally distribution of nanofibres. DSC and TGA showed higher thermal properties and change crystallinity of the developed bionanocomposite mainly because these structural modification. © 2012 Elsevier B.V.
Resumo:
The silicon-based gate-controlled lateral bipolar junction transistor (BJT) is a controllable four-terminal photodetector with very high responsivity at low-light intensities. It is a hybrid device composed of a MOSFET, a lateral BJT, and a vertical BJT. Using sufficient gate bias to operate the MOS transistor in inversion mode, the photodetector allows for increasing the photocurrent gain by 106 at low light intensities when the base-emitter voltage is smaller than 0.4 V, and BJT is off. Two operation modes, with constant voltage bias between gate and emitter/source terminals and between gate and base/body terminals, allow for tuning the photoresponse from sublinear to slightly above linear, satisfying the application requirements for wide dynamic range, high-contrast, or linear imaging. MOSFETs from a standard 0.18-μm triple-well complementary-metal oxide semiconductor technology with a width to length ratio of 8 μm /2 μm and a total area of ∼ 500μm2 are used. When using this area, the responsivities are 16-20 kA/W. © 2001-2012 IEEE.
Resumo:
Pure hydroxyapatite (HA) and hydroxyapatite decorated with silver (HA@Ag) nanoparticles were synthesized and characterized. The antifungal effect of HA@Ag nanoparticles in a distilled water solution was evaluated against Candida albicans. The origin of the antifungal activity of the HA@Ag is also discussed. The results obtained showed that the HA nanorod morphology remained the same with Ag ions decorations on the HA structure which were deposited in the form of nanospheres. Interaction where occurred between the structure and its defect density variation in the interfacial HA@Ag and intrafacial HA region with the fungal medium resulted in antifungal activity. The reaction mechanisms involved oxygen and water adsorption which formed an active complex cluster. The decomposition and desorption of the final products as well as the electron/hole recombination process have an important role in fungicidal effects. © 2013 C. A. Zamperini et al.
Resumo:
Green chemistry is an innovative way to approach the synthesis of metallic nanostructures employing eco-friendly substances (natural compounds) acting as reducing agents. Usually, slow kinetics are expected due to, use of microbiological materials. In this report we study composites of natural rubber (NR) membranes fabricated using latex from Hevea brasiliensis trees (RRIM 600) that works as reducing agent for the synthesis of gold nanoparticles. A straight and clean method is presented, to produce gold nanoparticles (AuNP) in a flexible substrate or in solution, without the use of chemical reducing reagents, and at the same time providing good size's homogeneity, reproducibility, and stability of the composites. Copyright © 2013 Flávio C. Cabrera et al.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)