70 resultados para COCHLEAR IMPLANTATION
Resumo:
Aim. The authors assess a modified Greenfield filter (GF) for the long-term patency, filter tilting and histopathologic alterations of the inferior vena cava (IVC).Methods. Adult sheep (n=7) underwent modified GF placement in the IVC. Cavograms were obtained every 3 months and pulmonary angiography at 12 months. Histopathologic and scanning electron microscopy (SEM) analyses were performed on the IVC explanted at 12 months.Results. Cavograms showed that all IVC were patent at the end of the study. Filter tilting occurred in 2/7 animals and extrusion of struts was not observed. Macroscopic examination at explantation showed minimal venous wall thickening. Microscopic examination showed minimal IVC fibrosis and intimal hyperplasia. SEM showed endothelium on the IVC surface at the filter implantation site and a presumed endothelial layer covering partially or totally the struts. The interface filter-IVC was covered by deposits of leucocytes and platelets. No signs of pulmonary embolism were found in all pulmonary angiograms of both groups.Conclusion. The modified filter presented good biocompatibility, stability and absence of thrombogenicity at 12 months. It presented low tendency to tilting and extrusion of struts. The long-term histopathologic alterations in vena caval wall were minimal and the appearance of the studied filters in the IVC was similar to stents placed in the arterial system.
Resumo:
Nitrogen implantation into Ti alloys at higher temperatures improves their mechanical and corrosion resistance properties by forming a thicker nitride layer. In this paper, two different sets of Ti-6Al-4V samples were plasma immersion ion implantation (PIII)-treated using nitrogen plasma, varying the treatment time from 30 to 150 min (800 degrees C) and the process temperature from 400 degrees C to 800 degrees C (t = 60 min). Nanoindentation measurements of the PIII-treated samples at 800 C during 150 min showed the highest hardness value, 24 GPa, which is about four times bigger than untreated sample hardness. The N penetration at these conditions reached approximately 150 nm as analyzed by Auger spectroscopy. on the other hand, the lowest passive current density (3 x 10(-7) A. cm(-2)) was obtained for a PIII-treated sample during 30 min at higher temperature (800 degrees C). The corrosion resistance of this sample is almost the same as for the untreated specimen. Corrosion behavior evidenced that in strong oxidizing media, all PIII-treated samples are more corrosion resistant than the untreated one. PIII processing at higher temperatures promotes smoothing of the sample surface as observed by scanning electron microscopy (SEM). Grazing incidence X-ray diffraction analyses of the untreated samples identified the two typical Ti phases, Ti alpha and Ti beta. After the implantation, Ti2N and TiO2 phases were also detected.
Resumo:
Commercial polyvinylchloride (PVC) sheets were treated by plasma immersion ion implantation, PIII. Samples were immersed in argon glow discharges and biased with 25 kV negative pulses. Exposure time to the bombardment plasma changed from 900 to 10,800 s. Through contact angle measurements, the effect of the exposure time on the PVC wettability was investigated. Independent of t, all samples presented contact angles, theta, equal to zero after the treatment. However, in some cases, surface hydrophilization was not stable, as revealed by the temporal evolution of theta. Samples bombarded for shorter periods recovered partially or totally the hydrophobic character while the one exposed for the longest time stayed highly hydrophilic. These modifications are ascribed to the Cl loss and O incorporation as shown by XPS measurements. Furthermore, the mobility of surface polar groups and the variation in the cross-linking degree can also affect the PVC wettability.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect of magnetic field enhanced plasma immersion ion implantation (PIII) in silicon substrate has been investigated at low and high pulsed bias voltages. The magnetic field in magnetic bottle configuration was generated by two magnetic coils installed outside the vacuum chamber. The presence of both, electric and magnetic field in PIII creates a system of crossed E x B fields, promoting plasma rotation around the target. The magnetized electrons drifting in crossed E x B fields provide electron-neutral collision. Consequently, the efficient background gas ionization augments the plasma density around the target where a magnetic confinement is achieved. As a result, the ion current density increases, promoting changes in the samples surface properties, especially in the surface roughness and wettability and also an increase of implantation dose and depth. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
Diverse amorphous hydrogenated carbon and similar films containing additional elements were produced by Plasma Enhanced Chemical Vapor Deposition (PECVD) and by Plasma Immersion Ion Implantation and Deposition (PIIID). Thus a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:O:Si were obtained, starting from the same feed gases, using both techniques. The same deposition system supplied with radiofrequency (RF) power was used to produce all the films. A cylindrical stainless steel chamber equipped with circular electrodes mounted horizontally was employed. RF power was fed to the upper electrode; substrates were placed on the lower electrode. For PIIID negative high tension pulses were also applied to the lower electrode. Raman spectroscopy confirmed that all the films are amorphous. Chemical characterization of each pair of films was undertaken using Infrared Reflection Absorption Spectroscopy and X-ray Photoelectron Spectroscopy. The former revealed the presence of specific structures, such as C-H, C-O, O-H. The latter allowed calculation of the ratio of hetero-atoms to carbon atoms in the films, e. g. F:C, N:C, and Si:C. Only relatively small differences in elemental composition were detected between films produced by the two methods. The deposition rate in PIIID is generally reduced in relation to that of PECVD; for a-C:H:Cl films the reduction factor is almost four.
Resumo:
Thin polymer films were deposited from acetylene and argon mixtures by plasma immersion ion implantation and deposition. The effect of the pulse frequency, v, on molecular structure, optical gap, contact angle and hardness of the films was investigated. It was observed progressive dehydrogenation of the samples and increment in the concentration of unsaturated carbon bonds as the pulse frequency was increased. Film hardness and contact angle increased and optical gap decreased with v. These results are interpreted in terms of the chain unsaturation and crosslinking.
Resumo:
This study was conducted to observe the rat subcutaneous connective tissue reaction to implanted dentin tubes that were filled with mineral trioxide aggregate, Sealapex, Calciobiotic Root Canal Sealer (CRCS), Sealer 26, and the experimental material, Sealer Plus. The animals were sacrificed after 7 and 30 days, and the specimens were prepared for histological analysis after serial sections with a hard-tissue microtome. The undecalcified sections were examined with polarized light after staining according to the Von Kossa technique for calcium. At the tube openings, there were Von Kossa-positive granules that were birefringent to polarized light. Next to these granulations, there was irregular tissue, like a bridge, that was Von Kossa-positive. The dentin walls of the tubes exhibited a structure highly birefringent to polarized light, usually like a layer, in the tubules. These results were observed with all the studied materials, except the CRCS, which didn't exhibit any kind of mineralized structure. The results suggest that among the materials studied, the CRCS could have the least possibility of encouraging hard tissue deposition.
Resumo:
Nitrogen ions were implanted by plasma immersion in Kapton, Mylar and polypropylene, with the objective of forming a diamond-like carbon layer on these polymers. The Raman spectrum of the implanted polypropylene showed typical Diamond-Like Carbon (DLC) graphite (G) and disorder (D) peaks, with an sp 3/sp2 hybridization ratio of approximately 0.4 to 0.6. The XPS analysis of the three implanted polymers also showed peaks of C-C and N-C bonds in the sp3 configuration, with hybridization ratios in the same range as the Raman result. The implanted polymers were exposed to oxygen plasma to test the resistance of the polymers to oxygen degradation. Mass loss rate results, however, showed that the DLC layer formed is not sufficiently robust for this application. Nevertheless, the layer formed can be suitable for other applications such as in gas barriers in beverage containers. Further study of implantation conditions may improve the quality of the DLC layer.
Resumo:
The influence of endometrial cavity length (ECL) on implantation and pregnancy rates after 400 embryo transfers was studied prospectively in a population with the indication of IVF/intracytoplasmic sperm injection (ICSI). The tip of the transfer catheter was placed above or below the half point of the ECL in a randomized manner. Two analyses were performed: (i) absolute position (AP); embryo transfers were divided into three groups according to the distance between the end of the fundal endometrial surface and the catheter tip (DTC - distance tip catheter): AP 1 (n = 212), 10-15 mm; AP 2 (n = 158), 16-20 mm; and AP 3 (n = 30), ≥21 mm. (ii) relative position (RP) - embryo transfers were divided into four groups according to their RP [RP = (DTC/ECL) × 100]: RP 1 (n = 23), ≤40%; RP 2 (n = 177), 41-50%; RP 3 (n = 117), 51-60%; and RP 4 (n = 83), ≥61%. Analysis based on relative distance revealed significantly higher implantation and pregnancy rates (P < 0.05) in more central areas of the ECL. However, analysis based on absolute position did not reveal any difference. In conclusion, the present results demonstrated that implantation and pregnancy rates are influenced by the site of embryo transfer, with better results being obtained when the catheter tip is positioned close to the middle area of the endometrial cavity. In this respect, previous analysis of the ECL is the fundamental step in establishing the ideal site for embryo transfers.
Resumo:
The biggest advantage of plasma immersion ion implantation (PIII) is the capability of treating objects with irregular geometry without complex manipulation of the target holder. The effectiveness of this approach relies on the uniformity of the incident ion dose. Unfortunately, perfect dose uniformity is usually difficult to achieve when treating samples of complex shape. The problems arise from the non-uniform plasma density and expansion of plasma sheath. A particle-in-cell computer simulation is used to study the time-dependent evolution of the plasma sheath surrounding two-dimensional objects during process of plasma immersion ion implantation. Before starting the implantation phase, steady-state nitrogen plasma is established inside the simulation volume by using ionization of gas precursor with primary electrons. The plasma self-consistently evolves to a non-uniform density distribution, which is used as initial density distribution for the implantation phase. As a result, we can obtain a more realistic description of the plasma sheath expansion and dynamics. Ion current density on the target, average impact energy, and trajectories of the implanted ions were calculated for three geometrical shapes. Large deviations from the uniform dose distribution have been observed for targets with irregular shapes. In addition, effect of secondary electron emission has been included in our simulation and no qualitative modifications to the sheath dynamics have been noticed. However, the energetic secondary electrons change drastically the plasma net balance and also pose significant X-ray hazard. Finally, an axial magnetic field has been added to the calculations and the possibility for magnetic insulation of secondary electrons has been proven.
Resumo:
Implantation failure after IVF is one of the factors associated with a reduced chance of pregnancy for some patients. Assisted hatching methodologies are designed to facilitate the embryo's escape from the zona pellucida, and this strategy has been suggested as a means of improving pregnancy rates in patients with previous implantation failure. The aim of this prospective and randomized study was to evaluate the efficacy of quarter-laser zona thinning assisted hatching (qLZT-AH) in improving the implantation of embryos in patients with previous implantation failure. A total of 150 patients with a history of previous implantation failure were treated with intracytoplasmic sperm injection, and allocated into two groups: group 1, only one previous implantation failure, and group 2, repeated implantation failures. The patients in each group were randomized at the time of embryo transfer into a control group (no qLZT-AH) or experimental group where qLZT-AH was performed. For patients with repeated implantation failures, the implantation rate in those who received laser-thinned embryos was significantly higher (P=0.02) than in those whose embryos were not laser-thinned (10.9 and 2.6% respectively). However, this difference was not observed in patients who presented with only one previous implantation failure. The data demonstrate that qLZT-AH is an effective strategy for improving the implantation of embryos in patients with repeated implantation failures.