76 resultados para COBALT PHTHALOCYANINE
Resumo:
Molecular-level interactions are found to bind iron tetrasulfonated phthalocyanine (FeTsPc) and the polyelectrolyte poly(allylamine hydrochloride) (PAH) in electroactive layer-by-layer (LBL) films. These interactions have been identified by comparing Fourier transform infrared (FTIR) and Raman spectroscopy data from bulk samples of FeTsPc and PAH with those from FeTsPc/PAH LBL films. of particular importance were the SO3- -NH3 interactions that we believe to bind PAH and FeTsPc and the interactions between unprotonated amine groups of PAH and the coordinating metal of the phthalocyanine. The multilayer formation was monitored via UV-vis spectroscopy by measuring the increase in the Q band of FeTsPc at 676 nm. Film thickness estimated with profilometry was ca. I I Angstrom per bilayer for films adsorbed on glass. Reflection absorption infrared spectroscopy (RAIRS) revealed an anisotropy in the LBL film adsorbed on gold with FeTsPc molecules oriented perpendicularly to the substrate plane. Cyclic voltammograms showed reproducible pairs of oxidation-reduction peaks at 1.07 and 0.81 V, respectively, for a 50-bilayer PAH/FeTsPc film at 50 mV/s (vs Ag/Ag+). The peak shape and current dependence on the scan rate suggest that the process is a diffusion controlled charge transport. In the presence of dopamine, the electroactivity of FeTsPc/PAH LBL films vanishes due to a passivation effect. Dopamine activity is not detected either because the interaction between Fe atoms and NH2 groups prevents dopamine molecules from coordinating with the Fe atoms.
Resumo:
Solid state compounds M-4-DMCP, where 4-DMCP is 4-dimethylaminocynnamylidenepyruvate and M represents Mn (II), Co (II), Ni (II), Cu (II), Zn (II) and Pb (II) were prepared. These compounds were studied by thermoanalytical techniques: thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometric titration with EDTA. From the results obtained by the complexometric titration with EDTA, TG, DTG and DSC curves, was possible to establish the hydration degree, stoichiometry and thermal stability of the prepared compounds.
Resumo:
This work describes optimized conditions for preparation of a cobalt complex entrapped in alumina amorphous materials in the form of powder. The hybrid materials, CoNHG, were obtained by a nonhydrolytic sol-gel route through condensation of aluminum chloride with diisopropylether in the presence of cobalt chloride. The materials were calcined at various temperatures. The presence of cobalt entrapped in the alumina matrix is confirmed by ultraviolet visible spectroscopy. The materials have been characterized by X-ray diffraction (XRD), surface area analysis, thermogravimetric analysis (TGA), differential thermal analyses (DTA) and transmission electron microscopy (TEM). The prepared alumina matrix materials are amorphous, even after heat treatment up to 750 degreesC. The XRD, TGA/DTA and TEM data support the increase of sample crystallization with increasing temperature. The specific surface area, pore size and pore diameter changed as a function of the heat treatment temperature employed. Different heat treatment temperatures result in materials with different compositions and structures, and influence their catalytic activity. The entrapped cobalt materials calcined at 750 degreesC efficiently catalyzed the epoxidation of (Z)-cyclooctene using iodozylbenzene as the oxygen donor. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Cobalt(II) and nickel(II) djenkolates CoC7H12N2O4S2. H2O (I) and NiC7H12N2O4S2. H2O (II) were synthesized by the reaction of potassium djenkolate with the respective chlorides. LR spectra suggested coordination via the COO- and NH2 groups for the ligands in both compounds. Visible absorption spectra confirmed the octahedral structure of the complexes. X-ray powder diffraction patterns were indexed in the orthorhombic and monoclinic unit cells with parameters: a = 11.35, b = 7.35, c = 6.85 Angstrom for I and a = 11.54, b = 7.45, c = 6.90 Angstrom, beta = 94.95 degrees for II.
Resumo:
Natural gums have been traditionally applied in cosmetics and the food industry, mainly as emulsification agents. Due to their biodegradability and excellent mechanical properties, new technological applications have been proposed involving their use with conventional polymers forming blends and composites. In this study, we take advantage of the polyelectrolyte character exhibited by the natural gum Chicha (Sterculia striata), extracted in the Northeastern region of Brazil, to produce electroactive nanocomposites. The nanocomposites were fabricated in the form of ultrathin films by combining a metallic phthalocyanine (nickel tetrasulfonated phthalocyanine, NiTsPc) and the Chicha gum in a tetralayer architecture, in conjunction with conventional polyelectrolytes. The presence of the gum led to an efficient adsorption of the phthalocyanine and enhanced the electrochemical response of the films. Upon combining the electrochemical and UV-vis absorption data, energy diagrams of the Chicha/NiTsPc-based system were obtained. Furthermore, modified electrodes based on gum/phthalocyanine films were able to detect dopamine at concentrations as low as 10(-5) M.
Resumo:
The electrochemical behavior of a coating of cobalt oxide on cold-rolled steel in alkaline sodium sulfate was Studied using the electrochemical techniques of open-circuit potential measurements and electrochemical impedance spectroscopy. The coating was prepared at different annealing temperatures ranging from 350 to 750 degreesC and characterized by SEM, EDX and XRD. Below 550 degreesC the composition of the coating was basically of Co3O4. At 750 degreesC CoO was formed and big cracks appeared on the film exposing an inner layer of iron oxides. Analysis of the EIS data is very difficult because of the complexity of the interface structure. It can be inferred that the charge transfer resistance of the coatings prepared at 350 and 450 C were higher than those for the coatings prepared at temperatures above 550 degreesC. (C) 2002 Published by Elsevier B.V. Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This article describes a comparison of conventional energy-dispersive X-ray fluorescence (EDXRF) and synchrotron radiation total-reflection X-ray fluorescence (SRTXRF) for Co determination in ruminal fluid from Holstein cow. This element is used as marker for animal nutrition studies. For EDXRF, 200 mu l of the sample were dried on 6.35 mu m Mylar filmat 60 degrees C. The excitation was carried out using an X-ray tube with Mo target and Zr filter operated at 30 kV/ 20 mA. For SRTXRF, 10 mu l of the samplewere pipetted on a Lucite carrier and dried at 60 degrees C. In both the techniques, Ga was used as internal standard and the acquisition time was 200 s. The trueness of both techniques was evaluated through the standard addition method, the recoveries obtained by SRTXRF and EDXRF were 76 and 99%, and the limits of detection, 13 and 240 mu g l(-1), respectively. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work describes the construction and application of two amperometric sensors for sensitive UV-filter determination. The sensors were prepared using stainless steel electrodes in which polyaniline (PANI) was electrochemically polymerized in the presence of nickel (NiPcTS) or iron (FePcTS) tetrasulfonated phthalocyanines. The sensor surface characterizations were carried out using atomic force microscopy (AFM). The PANI/NiPcTS sensor was selective for the chemical UV-filter p-aminobenzoic acid (PABA) and the PANI/FePcTS sensor was selective for octyldimethyl-PABA (ODP), both in a mixture of tetrahydrofuran (THF) and 0.1 mol L(-1) H(2)SO(4) at a volume ratio of 30 : 70, and with an applied potential of 0.0 mV vs. Ag vertical bar AgCl. A detailed investigation of the selectivity was carried out for both sensors, in order to determine their responses for ten different UV filters. Finally, each sensor was successfully applied to PABA or ODP quantification in sunscreen formulations and water from swimming pools.
Resumo:
The electrocatalysis of dopamine has been studied using a cobalt hexacyanoferrate film (CoHCFe)-modified glassy carbon electrode. Using a rotating disk CoHCFe-modified electrode, the reaction rate constant for dopamine was found to be 3.5 x 105 cm(3) mol(-1) s(-1) at a concentration of 5.0 x 10(-5) mol L-1. When a Nafion (R) film is applied to the CoHCFe-modified electrode surface a high selectivity for the determination of dopamine over ascorbic acid was obtained. The analytical curve for dopamine presented linear dependence over the concentration range from 1.2 x 10(-5) to 5.0 x 10(-4) mol L-1 with a slope of 23.5 mA mol(-1) L and a linear correlation coefficient of 0.999. The detection limit of this method was 8.9 x 10(-6) mol L-1 and the relative standard deviation for five measurements of 2.5 x 10(-4) mol L-1 dopamine was 0.58%.
Resumo:
The influence of the axial organic ligand R on the electrochemical oxidation of the compounds [RCoIII(salen)DMF)], where salen is bis(salicylaldehyde)ethylenediimine, and R CH3, C2H5, n-C3H7, n-C4H9, s-C4H9, i-C4H9, CH2Cl, CF3CH2, c-C6H11CH2, c-C6H11, C6H5, C6H5CH2, p-CH3C6H4CH2, and p-NO2C6H4CH2, was studied by means of cyclic voltametry in dimethylformamide (DMF), 0.2 M in tetraethylammonium perchlorate (TEAP), at 25 and -20°C, with a platinum disc working electrode. The above-mentioned compounds can be classified according to their electrochemical behavior. (a) The complexes with R CH3, C2H5, n-C3H7, n-C4H9, c-C6H11CH2, and C6H5 undergo a reversible one-electron oxidation in the 10-50 V s-1 potential scan range. At slower scan rates, the oxidized product decomposes chemically. At -20°C, this chemical step is slow, and a reversible one-electron electrochemical oxidation is observed. (b) The compounds with R CH2Cl, C6H5CH2, p-CH3C6H4CH2 and p-NO2C6H4CH2 undergo a quasi-reversible one-electron oxidation at room temperaure. At -20°C, the electrochemical process becomes more complex. A following chemical reactions is coupled to the quasi-reversible one-electron transfer. Two reduction peaks are observed. (c) The compounds with R i-C4H9, s-C4H9, and c-C6H11 undergo a reversible one-electron oxidation at -20°C. At room temperature, the irreversible chemical reaction following the electron transfer step is too fast to allow the isolation of the electrochemical step. (d) At -20°C, the derivatives with R C2H5, c-C6H11 CH2 and c-C6H11 are adsorbed at the electrode surface. Evidence indicates that the reagent in these reactions is the pentacoordinated species [RCoIII(salen)]. A linear free-energy relationship between E1/2 (for reversible processes) and the Taft polar parameters o* was obtained with a slope of ρ* = 0.25 ± 0.03. As expected, the benzyl derivatives which present mesomeric effects do not fit this polar correlation. The rated of the electrochemical oxidation is also affected by the nature of the ligand R. For the ligands which are strong electron-withdrawing groups and for the benzyl derivatives, the rate of the electrochemical oxidation of the metal ion decreases at room temperature. At lower temperatures, it is suggested that the oxidation to the CoIV-R species is followed by a chemical reaction in which this complex is partly transformed into a CoIII(R*) species, which is reduced at a much more cathodic potential than the Co(IV) species. © 1979.