232 resultados para CO 2 adsorption
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper discusses the results of biodegradability tests of natural fibers used by the automotive industry, namely: coir, coir with latex, and sisal. The biodegradation of coir, coir with latex, and of sisal fibers was determined by monitoring the production of carbon dioxide (CO(2)) (IBAMA-E.1.1.2, 1988) and fungal growth (DIN 53739, 1984). The contents of total extractives, lignin, holocellulose, ashes, carbon, nitrogen and hydrogen of the fibers under study were determined in order to ascertain their actual content and to understand the results of the biodegradation tests. The production of CO(2) indicated low biodegradation, i.e., about 10% in mass, for all the materials after 45 days of testing; in other words, no material inhibited glucose degradation. However, the percentage of sisal fiber degradation was fourfold higher than that of coir with latex in the same period of aging. The fungal growth test showed a higher growth rate on sisal fibers, followed by coir without latex. In the case of coir with latex, we believe the fungal growth was not intense, because natural latex produces a bactericide or fungicide for its preservation during bleeding [1]. An evaluation of the materials after 90 days of aging tests revealed breaking of the fibers, particularly sisal and coir without latex, indicating fungal attack and biodegradation processes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Lignins extracted from sugar cane bagasse using different alcohols in the organosolv-CO(2) supercritical pulping process have been applied in the fabrication of ultrathin films through the Langmuir-Blodgett technique. Langmuir films were characterized by surface pressure versus mean molecular area (Pi-A) isotherms to exploit the sensitivity of nanostructured lignin films to metallic ions (Cu(2+), Cd(2+) and Pb(2+)). The Pi-A isotherms were shifted to larger molecular areas when heavy metal ions are present into the subphase, which might be related to electrostatic repulsions between metallic ions entrapped within the lignin molecular structure. Taking the advantage of metal incorporation, Langmuir monolayers were transferred onto solid substrates forming Langmuir-Blodgett (LB) films to be used as a transducer in an "electronic tongue" system to detect Cu(2+) in aqueous solution below threshold standard established by the Brazilian regulation. Both techniques impedance spectroscopy and electrochemistry have been used in these experiments. Complementary, Fourier transform infrared (FTIR) spectroscopy recorded for LB films before and after soaking into Cu(2+) aqueous solution revealed an interaction between the lignin phenyl groups and the metallic ion. (C) 2007 Elsevier B.V.. All rights reserved.
Ecological impacts from syngas burning in internal combustion engine: Technical and economic aspects
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper evaluates and quantifies the environmental impact resulting from the combination of biodiesel fuel (pure or blended with diesel), and diesel combustion in thermoelectric power plants that utilize combined cycle technology (CC). In regions without natural gas, the option was to utilize diesel fuel; the consequence would be a greater emission of pollutants. Biodiesel is a renewable fuel which has been considerably interesting in Brazil power matrix in recent years. The concept of ecological efficiency, largely evaluates the environmental impact caused by CO(2), SO(2), NO(x) and particle matter (PM) emissions. The pollution resulting from biodiesel and diesel combustion is analyzed, separately considering CO(2), SO(2), NO(x) and particulate matter gas emissions, and comparing them international standards currently used regarding air quality. It can be concluded that it is possible to calculate the qualitative environmental factor, and the ecological effect, from a thermoelectric power plant utilizing central heat power (CHP) of combined cycle. The ecological efficiency for pure biodiesel fuel (B100) is 98.16%; for biodiesel blended with conventional diesel fuel, B20 (20% biodiesel and 80% diesel) is 93.19%. Finally, ecological efficiency for conventional diesel is 92.18%, as long as a thermal efficiency of 55% for thermoelectric power plants occurs. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper evaluates and quantifies the environmental impact from the use of some renewable fuels and fossils fuels in internal combustion engines. The following fuels are evaluated: gasoline blended with anhydrous ethyl alcohol (anhydrous ethanol), conventional diesel fuel, biodiesel in pure form and blended with diesel fuel, and natural gas. For the case of biodiesel, its complete life cycle and the closed carbon cycle (photosynthesis) were considered. The ecological efficiency concept depends on the environmental impact caused by CO(2), SO(2), NO(x) and particulate material (PM) emissions. The exhaust gases from internal combustion engines, in the case of the gasoline (blended with alcohol), biodiesel and biodiesel blended with conventional diesel, are the less polluting; on the other hand, the most polluting are those related to conventional diesel. They can cause serious problems to the environment because of their dangerous components for the human, animal and vegetable life. The resultant pollution of each one of the mentioned fuels are analyzed, considering separately CO(2), SO(2), NO(x) and particulate material (PM) emissions. As conclusion, it is possible to calculate an environmental factor that represents, qualitatively and quantitative, the emissions in internal combustion engines that are mostly used in urban transport. Biodiesel in pure form (B100) and blended with conventional diesel as fuel for engines pollute less than conventional diesel fuel. The ecological efficiency for pure biodiesel (B100) is 86.75%: for biodiesel blended with conventional diesel fuel (B20, 20% biodiesel and 80% diesel), it is 78.79%. Finally, the ecological efficiency for conventional diesel, when used in engines, is 77.34%; for gasoline, it is 82.52%, and for natural gas, it is 91.95%. All these figures considered a thermal efficiency of 30% for the internal combustion engine. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.
Resumo:
The population dynamics in the enteric connective tissues of eosinophils, mucosal mast cells (MMC), and in the mucosal epithelium of goblet cells were examined morphometrically in fixed ileal tissue of outbred Sprague Dawley rats during the first 32 days of infection with the tapeworm Hymenolepis diminuta. MMC and eosinophils were present in the lamina propria and submucosa; however, only eosinophils were also present in the muscularis externa. Eosinophilic infiltrate was first observed in the lamina propria at 15 days postinfection (dpi) and the numbers of eosinophils remained elevated through 32 dpi. Initial mucosal mastocytosis was detected on 6 dpi and MC numbers continued to rise over the study period without reaching a plateau. Goblet cell hyperplasia occurred only at 32 dpi. In contrast to some intestinal nematode infections where these same 3 cell types are associated with the host's expulsion responses, H. diminuta is not lost by a rapid host response in the outbred Sprague Dawley rat strain used in these experiments. We suggest that either the induction of hyperplasia of these host effector cells in ileum tissue during H. diminuta infection is not capable of triggering parasite rejection mechanisms, or the function of the induced hyperplasia is necessary for some as yet unassociated physiological or tissue architecture change in the host's intestine.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
P>Reasons for performing study:Carbonic anhydrase (CA) catalyses the hydration/dehydration reaction of CO(2) and increases the rate of Cl- and HCO(3)- exchange between the erythrocytes and plasma. Therefore, chronic inhibition of CA has a potential to attenuate CO(2) output and induce greater metabolic and respiratory acidosis in exercising horses.Objectives:To determine the effects of Carbonic anhydrase inhibition on CO(2) output and ionic exchange between erythrocytes and plasma and their influence on acid-base balance in the pulmonary circulation (across the lung) in exercising horses with and without CA inhibition.Methods:Six horses were exercised to exhaustion on a treadmill without (Con) and with CA inhibition (AczTr). CA inhibition was achieved with administration of acetazolamide (10 mg/kg bwt t.i.d. for 3 days and 30 mg/kg bwt before exercise). Arterial, mixed venous blood and CO(2) output were sampled at rest and during exercise. An integrated physicochemical systems approach was used to describe acid base changes.Results:AczTr decreased the duration of exercise by 45% (P < 0.0001). During the transition from rest to exercise CO(2) output was lower in AczTr (P < 0.0001). Arterial PCO(2) (P < 0.0001; mean +/- s.e. 71 +/- 2 mmHg AczTr, 46 +/- 2 mmHg Con) was higher, whereas hydrogen ion (P = 0.01; 12.8 +/- 0.6 nEq/l AczTr, 15.5 +/- 0.6 nEq/l Con) and bicarbonate (P = 0.007; 5.5 +/- 0.7 mEq/l AczTr, 10.1 +/- 1.3 mEq/l Con) differences across the lung were lower in AczTr compared to Con. No difference was observed in weak electrolytes across the lung. Strong ion difference across the lung was lower in AczTr (P = 0.0003; 4.9 +/- 0.8 mEq AczTr, 7.5 +/- 1.2 mEq Con), which was affected by strong ion changes across the lung with exception of lactate.Conclusions:CO(2) and chloride changes in erythrocytes across the lung seem to be the major contributors to acid-base and ions balance in pulmonary circulation in exercising horses.
Resumo:
ObjectiveTo investigate the cardiorespiratory, nociceptive and endocrine effects of the combination of propofol and remifentanil, in dogs sedated with acepromazine.Study designProspective randomized, blinded, cross-over experimental trial.AnimalsTwelve healthy adult female cross-breed dogs, mean weight 18.4 +/- 2.3 kg.MethodsDogs were sedated with intravenous (IV) acepromazine (0.05 mg kg-1) followed by induction of anesthesia with IV propofol (5 mg kg-1). Anesthesia was maintained with IV propofol (0.2 mg kg-1 minute-1) and remifentanil, infused as follows: R1, 0.125 mu g kg-1 minute-1; R2, 0.25 mu g kg-1 minute-1; and R3, 0.5 mu g kg-1 minute-1. The same dogs were administered each dose of remifentanil at 1-week intervals. Heart rate (HR), mean arterial pressure (MAP), respiratory rate (f(R)), end tidal CO(2) (Pe'CO(2)), arterial hemoglobin O(2) saturation, blood gases, and rectal temperature were measured before induction, and 5, 15, 30, 45, 60, 75, 90, and 120 minutes after beginning the infusion. Nociceptive response was investigated by electrical stimulus (50 V, 5 Hz and 10 ms). Blood samples were collected for plasma cortisol measurements. Statistical analysis was performed by anova (p < 0.05).ResultsIn all treatments, HR decreased during anesthesia with increasing doses of remifentanil, and increased significantly immediately after the end of infusion. MAP remained stable during anesthesia (72-98 mmHg). Antinociception was proportional to the remifentanil infusion dose, and was considered satisfactory only with R2 and R3. Plasma cortisol concentration decreased during anesthesia in all treatments. Recovery was smooth and fast in all dogs.Conclusions and clinical relevanceInfusion of 0.25-0.5 mu g kg-1 minute-1 remifentanil combined with 0.2 mg kg-1 minute-1 propofol produced little effect on arterial blood pressure and led to a good recovery. The analgesia produced was sufficient to control the nociceptive response applied by electrical stimulation, suggesting that it may be appropriate for performing surgery.