242 resultados para CIRCULATORY AND RESPIRATORY PHYSIOLOGY
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Acting in the hypothalamus, tumor necrosis factor-alpha (TNF-alpha) produces a potent anorexigenic effect. However, the molecular mechanisms involved in this phenomenon are poorly characterized. In this study, we investigate the capacity of TNF-alpha to activate signal transduction in the hypothalamus through elements of the pathways employed by the anorexigenic hormones insulin and leptin. High dose TNF-a promotes a reduction of 25% in 12 h food intake, which is an inhibitory effect that is marginally inferior to that produced by insulin and leptin. In addition, high dose TNF-a increases body temperature and respiratory quotient, effects not reproduced by insulin or leptin. TNF-alpha, predominantly at the high dose, is also capable of activating canonical pro-inflammatory signal transduction in the hypothalamus, inducing JNK, p38, and NF kappa B, which results in the transcription of early responsive genes and expression of proteins of the SOCS family. Also, TNF-a activates signal transduction through JAK-2 and STAT-3, but does not activate signal transduction. through early and intermediary elements of the insulin/leptin signaling pathways such as IRS-2, Akt, ERK and FOXO1. When co-injected with insulin or leptin, TNF-a, at both high and low doses, partially impairs signal transduction through IRS-2, Akt, ERK and FOXO1 but not through JAK-2 and STAT-3. This effect is accompanied by the partial inhibition of the anorexigenic effects of insulin and leptin, when the low, but not the high dose of TNF-alpha is employed. In conclusion, TNF-alpha, on a dose-dependent way, modulates insulin and leptin signaling and action in the hypothalamus. (c) Published by Elsevier B.V.
Resumo:
Oxygen-binding properties, blood gases, and acid-base parameters were studied in tegu lizards, Tupinambis merianae, at different seasons and temperatures. Independent of temperature and pH, blood oxygen affinity was higher in dormant lizards than in those active during the summer. Haematocrit (Hct) and hemoglobin content ([Hb]) were greater in active lizards resulting in a higher oxygen-carrying capacity. Nucleoside triphosphate content ([NTP]) was reduced during dormancy, but the ratio between [NTP] and [Hb] remained unchanged. Dormancy was accompanied by an increase in plasma bicarbonate ([HCO(3)(-)]PI) and an elevation of arterial CO(2) partial pressure (P(aCO2)) and CO(2) content in the plasma (C(PlCO2)). These changes in acid-base parameters persist over a broad range of body temperatures. In vivo, arterial O(2) partial pressure (Pa(O2)) and O(2) content (Ca(O2)) were not affected by season and tended to increase with temperature. Arterial pH (pH(a)) of dormant animals is reduced compared to active lizards at body temperatures below 15 degreesC, while no significant difference was noticed at higher temperatures. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In order to study the relative roles of receptors in the upper airways, lungs and systemic circulation in modulating the ventilatory response of caiman (Caiman latirostris) to inhaled CO2, gas mixtures of varying concentrations of CO2 Were administered to animals breathing through an intact respiratory system, via a tracheal cannula by-passing the upper airways (before and after vagotomy), or via a cannula delivering gas to the upper airways alone. While increasing levels of hypercarbia led to a progressive increase in tidal volume in animals with intact respiratory systems (Series 1), breathing frequency did not change until the CO2 level reached 7%, at which time it decreased. Despite this, at the higher levels of hypercarbia, the net effect was a large and progressive increase in total ventilation. There were no associated changes in heart rate or arterial blood pressure. on return to air, there was an immediate change in breathing pattern; breathing frequency increased above air-breathing values, roughly to the same maximum level regardless of the level of CO2 the animal had been previously breathing, and tidal volume returned rapidly toward resting (baseline) values. Total ventilation slowly returned to air breathing values. Administration of CO2 via different routes indicated that inhaled CO2 acted at both upper airway and pulmonary CO2-sensitive receptors to modify breathing pattern without inhibiting breathing overall. Our data suggest that in caiman, high levels of inspired CO2 promote slow, deep breathing. This will decrease deadspace ventilation and may reduce stratification in the saccular portions of the lung.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background and Objectives. A combination of epidural and general anesthesia has been widely used to attenuate the surgical stress response and to provide postoperative analgesia. This case report illustrates the use of this anesthetic technique. Analgesia was induced with local anesthetic in the immediate postoperative period using unintentional 19.1% potassium chloride (KCI) as diluent. Methods. An ASA I male patient was scheduled for surgical correction of idiopathic megaesophagus under continuous epidural anesthesia combined with general anesthesia. In the postoperative period, while preparing 10 mt 0.125% bupivacaine to be administered through the epidural catheter for pain control, 5 mt 19.1% KCI was unintentionally used as diluent, resulting in a 9.55% potassium solution concentration. Results. The patient developed warmness of the lower limbs, tachycardia, hypertension, intense pruritus on the chest, agitation, exacerbation of sensory and motor blocks, and respiratory failure secondary to pulmonary edema, requiring ventilatory support. Total recovery was observed after 24 hours. Conclusions. Epidurally injected potassium leads to severe clinical manifestations caused by autonomic dysfunction, spinal cord irritation, and possible release of histamine. Despite continuous recommendations, ampule misidentification still happens in hospitals, frequently leading to serious accidents.
Resumo:
In Tropical regions, the animal performance is often affected by climate conditions. This study aimed to evaluate covering materials in individual shelters, normally used to house dairy calves, and its influence on the calves physiology and performance. The design used was completely randomized, with a 2x3 factorial arrangement to compare the averages of 5% through the Tukey's test, i.e., both genders-and three types of covering in the shelters (Z - zinc; AC - asbestos cement; and WPAC - white-painted asbestos cement). Parameters evaluated included daily weight gain (DWG), dry matter intake (DMI), feed conversion (FC), rectal temperature (RT), and respiratory frequency (RF). Results showed significant differences (P < 0.05) among males (1.04kg/day) and females (0.74kg/day) for DWG and interaction between gender and treatment (P < 0.05) for zinc covering (0.562kg/day for females and 1.120kg/day for males). Significant differences were also observed in FI of animals housed under shelters with the covering of zinc (48.35kgDM/day for females and 96.91 kgDM/day for males). There were no significant differences (P > 0.05) in the FC and the RT, and there were significant differences (P < 0.05) for RF in the Z treatments (56.9 mov.min(-1)), WPAC (62.2 mov.min(-1)) and FC (70.25 mov.min-1). It was concluded that different covering materials did not affect performance and dry matter intake of dairy calves. However, the animals' physiology of thermoregulation was altered by the different covering materials used in individual shelters.
Resumo:
In this review, we summarize the energetic and physiological correlates of prey handling and ingestion in lizards and snakes. There were marked differences in the magnitude of aerobic metabolism during prey handling and ingestion between these two groups, although they show a similar pattern of variation as a function of relative prey mass. For lizards, the magnitude of aerobic metabolism during prey handling and ingestion also varied as a function of morphological specializations for a particular habitat, prey type, and behavior. For snakes, interspecific differences in aerobic metabolism during prey handling seem to be correlated with adaptations for prey capture (venom injection vs. constriction). During ingestion by snakes, differences in aerobic metabolism might be due to differences in cranial morphology, although allometric effects might be a potentially confounded effect. Anaerobic metabolism is used for prey handling and ingestion, but its relative contribution to total ATP production seems to be more pronounced in snakes than in lizards. The energetic costs of prey handling and ingestion are trivial for both groups and cannot be used to predict patterns of prey-size selection. For lizards, it seems that morphological and ecological factors set the constraints on prey handling and ingestion. For snakes, besides these two factors, the capacity of the cardio-respiratory system may also be an important factor constraining the capacity for prey handling and ingestion. © 2001 Elsevier B.V.
Resumo:
The surgical removal of the post-hepatic septum (PHS) in the tegu lizard, Tupinambis merianae, significantly reduces resting lung volume (VLr) and maximal lung volume (VLm) when compared with tegus with intact PHS. Standardised for body mass (MB), static lung compliance was significantly less in tegus without PHS. Pleural and abdominal pressures followed, like ventilation, a biphasic pattern. In general, pressures increased during expiration and decreased during inspiration. However, during expiration pressure changes showed a marked intra- and interindividual variation. The removal of the PHS resulted in a lower cranio-caudal intracoelomic pressure differential, but had no effect on the general pattern of pressure changes accompanying ventilation. These results show that a perforated PHS that lacks striated muscle has significant influence on static breathing mechanics in Tupinambis and by analogy provides valuable insight into similar processes that led to the evolution of the mammalian diaphragm. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The medullary raphé is an important component of the central respiratory network, playing a key role in CO2 central chemoreception. However, its participation in hypoxic ventilatory responses is less understood. In the present study, we assessed the role of nucleus raphé obscurus (ROb), and specifically 5-HT neurons confined in the ROb, on ventilatory and thermoregulatory responses to hypoxia. Chemical lesions of the ROb were performed using either ibotenic acid (non-specific lesion; control animals received PBS) or anti-SERT-SAP (5-HT specific lesion; control animals received IgG-SAP). Ventilation (VE; whole body plethysmograph) and body temperature (Tb; data loggers) were measured during normoxia (21% O2, N2 balance) and hypoxia exposure (7% O2, N2 balance, 1h) in conscious adult rats. Ibotenic acid or anti-SERT-SAP-induced lesions did not affect baseline values of VE and Tb. Similarly, both lesion procedures did not alter the ventilatory or thermoregulatory responses to hypoxia. Although evidence in the literature suggests a role of the rostral medullary raphé in hypoxic ventilatory responses, under the present experimental conditions our data indicate that caudal medullary raphé (ROb) and its 5-HT neurons neither participate in the tonic maintenance of breathing nor in the ventilatory and thermal responses to hypoxia. © 2013 Elsevier B.V.
Resumo:
Background: Chronic kidney disease (CKD) is one of the most serious public health problems. The increasing prevalence of CKD in developed and developing countries has led to a global epidemic. The hypothesis proposed is that patients undergoing dialysis would experience a marked negative influence on physiological variables of sleep and autonomic nervous system activity, compromising quality of life.Methods/Design: A prospective, consecutive, double blind, randomized controlled clinical trial is proposed to address the effect of dialysis on sleep, pulmonary function, respiratory mechanics, upper airway collapsibility, autonomic nervous activity, depression, anxiety, stress and quality of life in patients with CKD. The measurement protocol will include body weight (kg); height (cm); body mass index calculated as weight/height(2); circumferences (cm) of the neck, waist, and hip; heart and respiratory rates; blood pressures; Mallampati index; tonsil index; heart rate variability; maximum ventilatory pressures; negative expiratory pressure test, and polysomnography (sleep study), as well as the administration of specific questionnaires addressing sleep apnea, excessive daytime sleepiness, depression, anxiety, stress, and quality of life.Discussion: CKD is a major public health problem worldwide, and its incidence has increased in part by the increased life expectancy and increasing number of cases of diabetes mellitus and hypertension. Sleep disorders are common in patients with renal insufficiency. Our hypothesis is that the weather weight gain due to volume overload observed during interdialytic period will influence the degree of collapsibility of the upper airway due to narrowing and predispose to upper airway occlusion during sleep, and to investigate the negative influences of haemodialysis in the physiological variables of sleep, and autonomic nervous system, and respiratory mechanics and thereby compromise the quality of life of patients.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)