65 resultados para CFD (computational fluid dynamics)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to study the thermodynamic, ecological and fluid-dynamic aspects of a circulating fluidized bed gasifier using sugar cane bagasse as biomass, in order to estimate a model of its normal operation. In the initial stage was analysed the composition of biomass selected (sugar cane bagasse) and its lower heating value (LHV) was calculated. The energy balance of the gasifier was done, being the volumetric flow of air, synthesis gas and biomass estimated. Also the power produced by this gasifier was theoretically estimated. Then the circulating fluidized bed gasifier was designed for operation with approximately 100 kg/h of processed biomass. Cross-sectional area of the reactor, feeder size, diameter of the exit zone of the gases and minimum height of the expanded bed were selected. Some bed gasifier hydrodynamic factors were also studied. The minimum fluidization velocity, fluidization terminal velocity, and average fluidizing velocity were calculated, in order to understand the fluid-dynamic behaviour of gasification of this fuel. It was obtained a theoretical model that can support a possible prototype of circulating fluidized bed gasifier biomass. Finally, there were studied the ecological aspects of the gasifier, through an overall methodology. Ecological efficiencies were estimated for two scenarios: first considering the carbon cycle and thereafter disregarding the carbon cycle. In both cases, it can be proved the ecological viability of the project. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dispersion of pollutants in the environment is an issue of great interest as it directly affects air quality, mainly in large cities. Experimental and numerical tools have been used to predict the behavior of pollutant species dispersion in the atmosphere. A software has been developed based on the control-volume based on the finite element method in order to obtain two-dimensional simulations of Navier-Stokes equations and heat or mass transportation in regions with obstacles, varying position of the pollutant source. Numeric results of some applications were obtained and, whenever possible, compared with literature results showing satisfactory accordance. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the dynamics of the noncommutative fluid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monochromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy-momentum tensor of the plane waves is calculated. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to study the thermal aspects involved in a liquid cooling system for processors, analyzing their competitiveness and efficiency across the fins and fan system usually used by personal computers, because electronic components become more potent and consequently current methods of cooling are becoming ineffective. The liquid cooling system and air cooling system have different heat transfer mechanisms that involve mainly convection and conduction heat transfer modes, and, furthermore, requires an analysis of fluid dynamics, which can evaluate the losses involved in the closed system, consisting in an exchanger heat pipe and water blocks in liquid cooling system or heat sink and turbo-axial fan in the air cooling system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the nonlinear oscillations in a free surface of a fluid in a cylinder tank excited by non-ideal power source, an electric motor with limited power supply. We study the possibility of parametric resonance in this system, showing that the excitation mechanism can generate chaotic response. Additionally, the dynamics of parametrically excited surface waves in the tank can reveal new characteristics of the system. The fluid-dynamic system is modeled in such way as to obtain a nonlinear differential equation system. Numerical experiments are carried out to find the regions of chaotic solutions. Simulation results are presented as phase-portrait diagrams characterizing the resonant vibrations of free fluid surface and the existence of several types of regular and chaotic attractors. We also describe the energy transfer in the interaction process between the hydrodynamic system and the electric motor. Copyright © 2011 by ASME.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

INTRODUCTION: Regenerative therapies using biomaterials require accurate information on interactions between the implanted material and the human body. To improve the process of bone regeneration it is necessary to obtain a better understanding of the influence of the surfaces on the early stages of osseointegration. This work aims to investigate the dynamic interaction between simulated body fluid (SBF) and titanium surfaces (Ti cp) immediately after their first contact. METHODS: Ti cp samples were passed through physicochemical treatments after immersion in acid solution, alkaline solution and solutions containing TiO2 and Ca2+, to obtain three different surfaces. These were characterized by electron microscopy and free energy estimates. The evaluation of the interaction with SBF was performed by measuring the dynamic contact angles after contacting the surfaces. RESULTS: The effects of SBF wettability were more significant on surfaces according to high energy estimates. A comparative analysis of the three types of surfaces showed that fluid spreading was greater in samples with greater polar components, indicating that the surface nature influences interactions in the early stages of osseointegration. CONCLUSION: The results indicate the influence of polar interactions in the dynamic wettability of the SBF. It is possible that these interactions can also influence cellular viability on surfaces. Based on these results, new experiments are being designed to improve the presented methodology as a tool for the evaluation of biomaterials without the need for in vivo experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)