229 resultados para Bulbs (Plants)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aluminum (Al3+) toxicity is a major limiting factor to crop productivity in acid soils. The effects of aluminum on root and shoot growth of physic nut (Jatropha curcas L.) young plants and, the uptake and distribution of phosphorus, calcium, magnesium and aluminum in the roots and shoots were investigated in the present study. Plants were grown in 2.5L pots in a greenhouse. After fourteen days of adaptation to nutrient solution, plants were exposed to Al concentrations of 0, 370, 740, 1,100 and 1,480 mu mol L-1, corresponding to an active Al3+ solution of 13.3, 35.3, 90.0, 153.3 and 220.7 mu mol L-1, respectively. The dry matter partitioning between roots, stems and leaves, and the concentrations of P, Ca, Mg and Al in plant tissue, were measured after 75 days exposure to Al. The increasing level of Al3+ activity in solution progressively decreased the growth of the shoot and root of physic nut plants, and at the two highest active Al3+ levels, plants showed morphological abnormalities typical of the toxicity caused by this metal. Higher Al3+ activity reduced P concentrations in leaves and Ca and Mg in leaves and roots of physic nut, demonstrating the effect of Al on the uptake, transport and use of these nutrients by plants. The Al accumulated preferentially in the roots of physic nut, whereas only a small amount was transported to shoots.
Resumo:
Objetivou-se com o presente trabalho, estabelecer a relação entre os pigmentos fotossintéticos extraídos em DMSO e as leituras obtidas no clorofilômetro portátil ClorofiLOG® 1030, gerando modelos matemáticos capazes de predizer os teores de clorofila e de carotenóides em folhas de mamoneira. O trabalho foi conduzido na Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Algodão, situada em Campina Grande, Estado da Paraíba, em outubro de 2010. Para a análise indireta, foi utilizado um equipamento portátil, sendo realizada a leitura em discos foliares com diferentes tonalidades de verde, sendo feita, nesses mesmos discos, a determinação da clorofila pelo método clássico. Para a extração da clorofila, utilizaram-se 5 mL de dimetilsulfóxido (DMSO), a qual foi mantida em banho-maria a 70ºC, por 30 minutos, e retirou-se 3 mL da alíquota para leitura em espectrofotômetro nos comprimentos de onda de 470, 646 e 663 nm. Os dados foram submetidos à análise da variância e regressão polinomial. A leitura obtida no clorofilômetro portátil foi a variável dependente, e os pigmentos fotossintéticos determinados pelo método clássico foi a variável independente. Os resultados indicaram que o clorofilômetro portátil ClorofiLOG® 1030, associado a modelos matemáticos, permitiu estimar a concentração dos pigmentos fotossintéticos, exceto a clorofila b, com alta precisão, com economia de tempo e com reagentes normalmente utilizados nos procedimentos convencionais.
Resumo:
This study aimed to achieve a better understanding about the foraging behavior of leaf-cutter ant (Atta sexdens rubropilosa Forel) workers with respect to defoliation sites in plants. To accomplish that, artificial plants 70 cm in height were prepared and divided into four levels (heights), having natural plant leaves attached to them. Evaluations during the bioassays included the number of leaves dropped by the ants, as well as the percentage of plant mass removed. In all replicates, it became evident that the most exploited plant site is the apical region, which significantly differed from other plant levels.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study aimed to evaluate the effect of substituting chemical nitrogen (N) fertilization for equivalent N levels from sewage sludge of Wastewater Treatment Plant (WTP) on sunflower plant development. Nutrient levels in physiologically mature leaves and seeds, besides nutrient exportation during a 130-day assay, were also assessed. The experiment was carried out in 100 m(2) permanent plots at Sao Manuel Farm, which belongs to School of Agronomical Sciences, São Paulo State University-UNESP, Botncatu, São Paulo State, Brazil. The farm is located in the municipality of Sao Manuel, São Paulo State. Experimental design was in randomized blocks including 5 treatments and 5 replicates. Treatments were: T1 - chemical N fertilization according to the recommendation for the culture; T2 - 50% N from sewage sludge and 50% N from chemical fertilization; T3 - 100% N from sewage sludge; T4 - 150% N from sewage sludge; T5 - 200% N from sewage sludge. For all treatments, equal amounts of P and K fertilization were applied. Treatments differed for plant height from 21 to 64 days, stern diameter from 28 to 57 days, and leaf number from 21 to 38 days. Seed nutrient levels slightly varied; however, the quantities of exported N, P, Mg, Fe and Zn varied as sewage sludge levels increased.
Resumo:
A adubação fosfatada promove o aumento de produtividade na cultura do alho, mas doses de fósforo (P) podem proporcionar a deficiência de zinco (Zn) na planta, sobretudo em solos com baixos teores deste micronutriente. O objetivo do trabalho foi verificar o efeito da interação entre P e Zn no solo sobre o desenvolvimento e produção de plantas de alho. Foram instalados três experimentos, cada um com um tipo de solo, em vasos com 17 kg de solo, em casa de vegetação telada. Empregou-se delineamento em blocos casualizados em esquema fatorial com 4 doses de P (0, 100, 200 e 400 mg dm-3) utilizando-se superfosfato triplo e 4 doses de Zn (0, 2,5, 5,0 e 10 mg dm-3) aplicados na forma de ZnSO4.7H2O, ambos incorporados ao solo, com três repetições. A produtividade e o desenvolvimento de plantas de alho foram influenciados, isoladamente, pelas doses de P e Zn, não havendo a interação entre esses nutrientes. Para os solos Neossolo Quartzarênico (NQ) textura arenosa, Latossolo Vermelho Distrófico (LE) textura média e Latossolo Vermelho Distroférrico (LR), textura argilosa, as melhores doses de P para a produção de alho foram de 190, 400 e 400 mg dm-3 e para o Zn de 2,2; 6,5 e 5,1 mg dm-3 respectivamente.
Resumo:
There is abundant evidence that reactive oxygen species are implicated in several physiological and pathological processes. To protect biological targets from oxidative damage. antioxidants must react with radicals and other reactive species faster than biological substrates do. The aim of the present study was to determine the in vitro antioxidant activity of aqueous extracts from leaves of Bauhinia forficata Link (Fabaceae - Caesalpinioideae) and Cissus sicyoides L. (Vitaceae) (two medicinal plants used popularly in the control of diabetes mellitus), using several different assay systems, namely, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) decolorization. superoxide anion radical (O-2 center dot-) scavenging and myeloperoxidase (MPO) activity. In the ABTS assay for total antioxidant activity, B. forficata showed IC50 8.00 +/- 0.07 mu g/mL, while C. sicyoides showed IC50 13.0 +/- 0.2 mu g/mL. However, the extract of C. sicyoides had a stronger effect on O-2 center dot- (IC50 60.0 +/- 2.3 mu p/mL) than the extract of B. forficata (IC50 90.0 +/- 4.4 mu g/mL). B. forficata also had a stronger inhibitory effect on MPO activity, as measured by guaiacol oxidation, than C. sicyoides. These results indicate that aqueous extracts of leaves of B. forficata and C. sicyoides are a potential source of natural antioxidants and may be helpful in the prevention of diabetic complications associated with oxidative stress.
Resumo:
The effects of nitrogen availability on growth and photosynthesis were followed in plants of sunflower (Helianthus annuus L., var. CATISSOL-01) grown in the greenhouse under natural photoperiod. The sunflower plants were grown in vermiculite under two contrasting nitrogen supply, with nitrogen supplied as ammonium nitrate. Higher nitrogen concentration resulted in higher shoot dry matter production per plant and the effect was apparent from 29 days after sowing (DAS). The difference in dry matter production was mainly attributed to the effect of nitrogen on leaf production and on individual leaf dry matter. The specific leaf weight (SLW) was not affected by the nitrogen supply. The photosynthetic CO2 assimilation (A) of the target leaves was remarkably improved by high nitrogen nutrition. However, irrespective of nitrogen supply, the decline in photosynthetic CO2 assimilation occurred before the end of leaf growth. Although nitrogen did not change significantly stomatal conductance (gs), high-N grown plants had lower intercellular CO2 concentration (C-i) when compared with low-N grown plants. Transpiration rate (E) was increased in high-N grown plants only at the beginning of leaf growth. However, this not resulted in lower intrinsic water use efficiency (WUE). (C) 2004 Elsevier B.V.. All rights reserved.
Resumo:
There has been much discussion on the importance of Brazilian ethanol in promoting a more sustainable society. However, there is a lack of analysis of whether sugarcane plants/factories that produce this ethanol are environmentally suitable. Thus, the objective of this study was to analyse stages of environmental management at four Brazilian ethanol-producing plants, examining the management practices adopted and the factors behind this adoption. The results indicate that (1) only one of the four plants is in the environmentally proactive stage; (2) all plants are adopting operational and organisational environmental management practices; (3) all plants have problems in communicating environmental management practices; and (4) the plant with the most advanced environmental management makes intense use of communication practices and is strongly oriented towards a more environmentally aware international market. This paper is an attempt to explain the complex relationship between the evolution of environmental management, environmental practices and motivation using a framework. The implications for society, plant directors and scholars are described, as well as the study's limitations.
Resumo:
The accurate identification of the nitrogen content in plants is extremely important since it involves economic aspects and environmental impacts, Several experimental tests have been carried out to obtain characteristics and parameters associated with the health of plants and its growing. The nitrogen content identification in plants involves a lot of non-linear parameters and complexes mathematical models. This paper describes a novel approach for identification of nitrogen content thought SPAD index using artificial neural networks (ANN). The network acts as identifier of relationships among, crop varieties, fertilizer treatments, type of leaf and nitrogen content in the plants (target). So, nitrogen content can be generalized and estimated and from an input parameter set. This approach can form the basis for development of an accurate real time system to predict nitrogen content in plants.
Resumo:
The accurate identification of the nitrogen content in crop plants is extremely important since it involves economic aspects and environmental impacts. Several experimental tests have been carried out to obtain characteristics and parameters associated with the health of plants and its growing. The nitrogen content identification involves a lot of nonlinear parametes and complexes mathematical models. This paper describes a novel approach for identification of nitrogen content thought spectral reflectance of plant leaves using artificial neural networks. The network acts as identifier of relationships among pH of soil, fertilizer treatment, spectral reflectance and nitrogen content in the plants. So, nitrogen content can be estimated and generalized from an input parameter set. This approach can be form the basis for development of an accurate real time nitrogen applicator.
Resumo:
This work evaluates the environmental impact resulting from the natural gas and diesel combustion in thermoelectric power plants that utilize the combined cycle technology (CC), as regarding to Brazilian conditions according to Thermopower Priority Plan JPP). In the regions where there are not natural gas the option has been the utilization of diesel and consequentily there are more emission of pollutants. The ecological efficiency concept, which evaluates by and large the environmental impact, caused by CO2, SO2, NOx and particulate matter (PM) emissions. The combustion gases of the thermoelectric power plants working with natural gas (less pollutant) and diesel (more pollutant) cause problems to the environment, for their components harm the human being life, animals and directly the plants. The resulting pollution from natural gas and diesel combustion is analyzed, considering separately the CO2, SO2, NO2 and particulate matter gas emission and comparing them with the in use international standards regarding the air quality. It can be concluded that it is possible to calculate thermoelectric power plant quantitative and qualitative environment factor, and on the ecological standpoint, for plant with total power of 41441 kW, being 27 170 kW for the gas turbine and 14271 kW for the steam turbine. The natural gas used as fuel is better than the diesel, presenting ecological efficiency of 0.944 versus 0.914 for the latter, considering a thermal efficiency of 54% for the combined cycle. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The increase in the use of natural gas in Brazil has stimulated public and private sectors to analyse the possibility of using combined cycle systems for generation of electrical energy. Gas turbine combined cycle power plants are becoming increasingly common due to their high efficiency, short lead times, and ability to meet environmental standards. Power is produced in a generator linked directly to the gas turbine. The gas turbine exhaust gases are sent to a heat recovery steam generator to produce superheated steam that can be used in a steam turbine to produce additional power. In this paper a comparative study between a 1000 MW combined cycle power plant and 1000 kW diesel power plant is presented. In first step, the energetic situation in Brazil, the needs of the electric sector modification and the needs of demand management and integrated means planning are clarified. In another step the characteristics of large and small thermoelectric power plants that use natural gas and diesel fuel, respectively, are presented. The ecological efficiency levels of each type of power plant is considered in the discussion, presenting the emissions of particulate material, sulphur dioxide (SO2), carbon dioxide (CO2) and nitrogen oxides (NOx). (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)