54 resultados para Bismuth based powders
Resumo:
PLT (Pb1-xLaxTiO3, in which x = 0, 0.13 and 0.27) powders were successfully synthesized using the polymeric precursor method, based on the Pechini method. The polymeric precursors were calcined at temperatures ranging from 350 to 500 degrees C for 4 h. X-ray diffraction (XRD) showed the evolution of the crystalline phase starting from the amorphous precursor. Thermogravimetric analyses (TG) and differential thermal analyses (DTA) of the powder precursors showed the influence of the pH on the elimination of organic material. PLT powders have a tendency to form agglomerates, what can be verified by comparing the values of the average particle sizes obtained by Brunauer-Emmett-Teller method, BET (D-BET) with the values of the average crystallite sizes obtained by XRD (D-XRD). (C) 2007 Elsevier Ltd. All fights reserved.
Resumo:
Non-linear electrical properties of SnO2-based ceramics were investigated as a function of powder agglomeration condition and as a function of dopant addition. All doped powders presented a single phase, cassiterite, as evidenced by X-ray diffraction analysis. The effect of milling was quite evident, with non-milled powder showing higher agglomerated particle size than milled powder. Cr addition seemed to increase the non-linear coefficient. Cu and Mn rendered dense ceramics, but α values for systems with Mn were higher than for systems with Cu.
Resumo:
Tin dioxide is an n-type semiconductor that when doped with other metallic oxides exhibits non-linear electric behavior with high non-linear coefficient values typical of a varistor. In this work, electrical properties of the SnO2.CoO.Ta2O5 and SnO2.CoO.MnO2.Ta2O5 ceramics systems were studied with the objective of analyzing the influence of MnO2 on sintering behavior and electrical properties of these systems. The compacts were prepared by powder mixture process and sintered at 1300°C for 1 hour, in air, using a constant heating rate of 10°C/min. The morphological and structural properties were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The densities of the sintered ceramics were measured using the Archimedes method. The SnO2.CoO.Ta2O5 and SnO2.CoO.MnO2.Ta2O5 systems presented breakdown fields (Eb) about 3100 V.cm-1 and 3800 V.cm-1, respectively, and non-linear coefficient (α) about 10 and 20, respectively.
Resumo:
Barium titanate thick films were prepared from mechanically activated powders based on BaCO 3 and TiO 2. The thick films were screen-printed on alumina substrates electroded with Ag/Pd. The BT films were sintered at 850°C for 1 hour. The thickness was 30-75 μm depending of number of layers. The microstructure of thick films and the compatibility between BT layers and substrate was investigated by SEM. The dielectric properties were measured and the results were reported.
Resumo:
The microstructure and dielectric properties of Nb-Mn or Sb-Mn codoped BaTiO3 compositions were investigated. Starting ceramics powders were prepared by Pechini method. The composites were sintered at 1310°C and 1330°C in an air atmosphere for two hours. The microstructure and compositional investigations were done with SEM equipped with EDS. Two distinguish microstructure regions are observed in Nb/0.05Mn doped BaTiO 3 ceramics sintered at low temperature. The first, large one, with grain sizes from 5-40 μm and the second region with small grain sizes from 1 to 5 μm. Sintering at higher temperature, independent of Mn content, enables to achieve a uniform microstructure with grains less than 6 μm. In Sb/Mn doped ceramics, for both sintering temperatures, bimodal microstructures with fine grained matrix and grains up to 10 μm is formed. The highest value of permittivity at room temperature and the greatest change of permittivity in function of temperature are observed in Nb/0.01Mn doped ceramics compared to the same ones in Sb/Mn doped ceramics. The greatest shift of Curie temperature towards lower temperature has been noticed in Sb/Mn BaTiO3 ceramics compared to others samples. In all investigated samples the dielectric loss after initially large values at low frequency maintains a constant value for f>3 kHz.
Resumo:
Different modifiers (IrCl3, W+IrCl3, Zr+IrCl 3) and coatings (Ir, W-Ir, Zr-Ir) were evaluated for the simultaneous determination of arsenic, bismuth, lead, antimony, and selenium in milk by graphite furnace atomic absorption spectrometry using the 'end-capped' transversely heated graphite atomizer (THGA). Integrated platform, pretreated with Zr-Ir as permanent modifier, was elected as the optimum surface modification resulting in up to 250 firings. Two additional recoatings were possible without significant changes in the analytical performance (750 firings). For 20 μL of matrix-matched standard solutions using diluted (1:10) milk samples, typical correlation coefficients between integrated absorbance and analyte concentration (5.00-20.0 μg/L) was always better than 0.999. The levels of the analytes found in commercial milk samples were lower than the limit of detection: 2.9 μg/L As, 2.9 μg/L Bi, 1.8 μg/L Pb, 1.9 μg/L Sb, and 2.5 μg/L Se. Recoveries were found within the following intervals: 88-114% for As, 89-118% for Bi, 89-113% for Pb, 91-115% for Sb, and 92-115% for Se. The relative standard deviations (n = 12) were ≤2% (As), ≤ 5% (Bi), ≤ 1.4% (Pb), ≤ 3% (Sb), and 5% (Se), and the respective calculated characteristic masses were 54 pg As, 55 pg Bi, 40 pg Pb, 56 pg Sb, and 51 pg Se.
Resumo:
The aim of this study was to evaluate the antimicrobial activity of a new root canal sealer containing calcium hydroxide (Acroseal) and the root canal sealer based on MTA (Endo CPM Sealer), in comparison with traditional sealers (Sealapex, Sealer 26 and Intrafill) and white MTA-Angelus, against five different microorganism strains. The materials and their components were evaluated after manipulation, employing the agar diffusion method. A base layer was made using Müller-Hinton agar (MH) and wells were made by removing agar. The materials were placed into the wells immediately after manipulation. The microorganisms used were: Micrococcus luteus (ATCC9341), Staphylococcus aureus (ATCC6538), Pseudomonas aeruginosa (ATCC27853), Candida albicans (ATCC 10231), and Enterococcus faecalis (ATCC 10541). The plates were kept at room temperature for 2 h for prediffusion and then incubated at 37 degrees C for 24 h. The results showed that Sealapex and its base paste, Sealer 26 and its powder, Endo CPM Sealer and its powder, white MTA and its powder all presented antimicrobial activity against all strains. Intrafill and its liquid presented antimicrobial activity against all strains except P. aeruginosa and Acroseal was effective only against M. luteus and S. aureus.
Resumo:
Bi 4Ti 3- xNbxO 12 (BITNb) samples, with × ranging from 0 to 0.40 were obtained using a polymeric precursor solution. Rietveld analyses confirmed that the powders crystallize in an orthorhombic structure free of secondary phases with space group Fmmm. Raman analysis evidenced a sharp increase in the bands intensity located at 129 cm -1 and 190 cm -1 due the lattice distortion in BIT02Nb and BIT04Nb compositions. UV-vis spectra indicated that addition of niobium causes a reduction of defects in the BIT lattice due the suppression of oxygen vacancies located at BO-6 octahedral. Size and morphology of particles as well as electrical behavior of BIT ceramics were affected by addition of donor dopant. Polarization reversal was investigated by applying dc voltage through a conductive tip during the area scanning and was investigated by piezoresponse force microscopy (PFM). PFM measurements revealed a decrease in piezoelectric response with increasing Nb concentration originating from a reduced polarizability along the a-axis. High spontaneous polarization is noted for the less doped sample due the reduction of strain energy and pin charged defects after niobium addition. Copyright © 2010 American Scientific Publishers.
Resumo:
This paper describes research on a simple low-temperature synthesis route to prepare bismuth ferrite nanopowders by the polymeric precursor method using bismuth and iron nitrates. BiFeO 3 (BFO) nanopowders were characterized by means of X-ray diffraction analyses, (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy (Raman), thermogravimnetric analyses (TG-DTA), ultra-violet/vis (UV/Vis) and field emission scanning electron microscopy (FE-SEM). XRD patterns confirmed that a pure perovskite BiFeO 3 structure with a rhombohedral distorted perovskite structure was obtained by heating at 850 °C for 4 hours. Typical FT-IR spectra for BFO powders revealed the formation of a perovskite structure at high temperatures due to a metal-oxygen bond while Raman modes indicated oxygen octahedral tilts induced by structural distortion. A homogeneous size distribution of BFO powders obtained at 850 °C for 4 hours was verified by FE-SEM analyses. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
Catalytic activity and selectivity of niobate-based nanostructured materials were investigated. Dry methane reforming (DMR) and ethylene homologation reaction (EHR) were selected as test reactions. KSr 2Nb5O15, Sr2NaNb5O 15 and NaSr2(NiNb4)O15 δ niobate powders were prepared by the high energy ball milling method and calcined in a reductor atmosphere. N2 adsorption isotherms, X-ray diffraction and infrared spectroscopy characterization was performed. Hydrogen pretreated niobates showed from low to moderate catalytic initial activity in DMR's test, nevertheless the materials were deactivated rapidly and the kinetic parameters associated to deactivation were estimated. Otherwise, non-treated catalysts showed a high initial activity in EHR's test and KSr2Nb 5O15 catalyst requires 24 h to the total deactivation with a high selectivity to form propylene. A reaction mechanism to the propylene formation is discussed. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Ba(Zr0.75Ti0.25)O3 (BZT-75/25) powders were synthesized by the polymeric precursor method. Samples were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) techniques. Their electronic structures were evaluated by first-principle quantum mechanical calculations based on density functional theory at the B3LYP level. Their optical properties were investigated by ultraviolet-visible (UV-Vis) spectroscopy and photoluminescence (PL) measurements at room temperature. XRD patterns and Rietveld refinement data indicate that the samples have a cubic structure. XANES spectra confirm the presence of pyramidal [TiO5] clusters and octahedral [TiO6] clusters in the disordered BZT-75/25 powders. EXAFS spectra indicate distortion of Ti-O and Ti-O-Ti bonds the first and second coordination shells, respectively. UV-Vis absorption spectra confirm the presence of different optical bandgap values and the band structure indicates an indirect bandgap for this material. The density of states demonstrates that intermediate energy levels occur between the valence band (VB) and the conduction band (CB). These electronic levels are due to the predominance of 4d orbitals of Zr atoms in relation to 3d orbitals of Ti atoms in the CB, while the VB is dominated by 2p orbitals related to O atoms. There was good correlation between the experimental and theoretical optical bandgap values. When excited at 482 nm at room temperature, BZT-75/25 powder treated at 500 C for 2 h exhibited broad and intense PL emission with a maximum at 578 nm in the yellow region. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This work deals with a red phosphor. Y3BO6:Eu3+, and its corresponding poly(N-vinylpyrrolidone) (PVP)/Y3BO6:Eu3+ luminescent composite film suitable for applications in the next generation of Hg-free lamps based on near ultraviolet (UV) light emitting diodes (LEDs). Well crystallized samples of Y3BO6 powders with the Eu3+ content up to 20 mol% were prepared by the Pechini method. After structural, morphological and optical characterization, the best doping rate of Eu3+ in the matrix was determined to be 15 mol%. This optimal powder, which is highly friable, was easily ground into fine particles and homogeneously dispersed into a PVP polymer solution to give rise to a polymer phosphor composite. Structural and optical features of the composite film have been studied and compared to those of a pristine PVP film and Y3BO6:Eu3+ powder. All the characterization (XRD, SAXS, luminescence...) proved that the red phosphor particles are well incorporated into the polymer composite film which exhibited the characteristic red emission of Eu3+ under UV light excitation. Furthermore, photostability of the polymer/phosphor composite film under UV-LED irradiation was evaluated from exposure to accelerated artificial photoageing at wavelengths above 300 nm.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)