34 resultados para Biocompatível
Resumo:
The correction of bone defects is the restoration of lost structures which can be replaced by alloplastic implants or bone grafts. Due to the known disadvantages of removal of autogenous grafts, most researches in dentistry aim to develop alloplastic or non-alloplastic materials able to replace bone without these limitations. Beta-Tricalcium Phosphate (β-TCP) is a synthetic granular bone substitute, biocompatible, osteoconductive, which can be used in the alveolar reconstruction. In this work, we perform a literature review on the β-TCP characteristics and discuss its application in dentistry.
Resumo:
Objectives: The aim of this study was to evaluate the behavior of the polymer histomorphometrically castor during the healing process of defects of critical size calvarial preparations in rats. Materials and Methods: Twenty animals underwent a surgical procedure that was to be held in the calvaria of each animal a critical defect of 8 mm in diameter with a drill trephine. The rats were divided into two groups according to the following procedures: group C received no treatment and the bone defect site was filled with blood clot, group M, the bone defect was filled with castor oil polymer particles. The animals were sacrificed 180 days after the surgical procedures. After routine laboratory procedures the specimens were subjected to analysis histomorphometric. Results: In groups C the newly formed bone tissue was well developed, with adjacent areas of osteoid matrix rich in osteoblasts, and restricted to the vicinity of the edges of the defect. In animals of group M was observed newly formed lamellar bone tissue restricted to the vicinity of the defect edges and particles of polymer Castor distributed throughout the defect. There was a higher percentage of newly formed bone area was statistically significant in group C compared to animals in group M. Conclusions: Within the limits of this study can conclude that the castor oil polymer is biocompatible and had kept the area during the healing of critical size defects in surgically prepared rat calvariae.
Resumo:
Objectives: The aim of this study was to evaluate the behavior of the polymer histomorphometrically castor during the healing process of defects of critical size calvarial preparations in rats. Materials and Methods: Twenty animals underwent a surgical procedure that was to be held in the calvaria of each animal a critical defect of 8 mm in diameter with a drill trephine. The rats were divided into two groups according to the following procedures: group C received no treatment and the bone defect site was filled with blood clot, group M, the bone defect was filled with castor oil polymer particles. The animals were sacrificed 180 days after the surgical procedures. After routine laboratory procedures the specimens were subjected to analysis histomorphometric. Results: In groups C the newly formed bone tissue was well developed, with adjacent areas of osteoid matrix rich in osteoblasts, and restricted to the vicinity of the edges of the defect. In animals of group M was observed newly formed lamellar bone tissue restricted to the vicinity of the defect edges and particles of polymer Castor distributed throughout the defect. There was a higher percentage of newly formed bone area was statistically significant in group C compared to animals in group M. Conclusions: Within the limits of this study can conclude that the castor oil polymer is biocompatible and had kept the area during the healing of critical size defects in surgically prepared rat calvariae
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)