96 resultados para Bilevel programming problem


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a method for solving the short term transmission network expansion planning problem is presented. This is a very complex mixed integer nonlinear programming problem that presents a combinatorial explosion in the search space. In order to And a solution of excellent quality for this problem, a constructive heuristic algorithm is presented in this paper. In each step of the algorithm, a sensitivity index is used to add a circuit (transmission line or transformer) or a capacitor bank (fixed or variable) to the system. This sensitivity index is obtained solving the problem considering the numbers of circuits and capacitors banks to be added (relaxed problem), as continuous variables. The relaxed problem is a large and complex nonlinear programming and was solved through a higher order interior point method. The paper shows results of several tests that were performed using three well-known electric energy systems in order to show the possibility and the advantages of using the AC model. ©2007 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a methodology and a mathematical model to solve the expansion planning problem that takes into account the effect of contingencies in the planning stage, and considers the demand as a stochastic variable within a specified range. In this way, it is possible to find a solution that minimizes the investment costs guarantying reliability and minimizing future load shedding. The mathematical model of the expansion planning can be represented by a mixed integer nonlinear programming problem. To solve this problem a specialized Genetic Algorithm combined with Linear Programming was implemented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An optimization technique to solve distribution network planning (DNP) problem is presented. This is a very complex mixed binary nonlinear programming problem. A constructive heuristic algorithm (CHA) aimed at obtaining an excellent quality solution for this problem is presented. In each step of the CHA, a sensitivity index is used to add a circuit or a substation to the distribution network. This sensitivity index is obtained solving the DNP problem considering the numbers of circuits and substations to be added as continuous variables (relaxed problem). The relaxed problem is a large and complex nonlinear programming and was solved through an efficient nonlinear optimization solver. A local improvement phase and a branching technique were implemented in the CHA. Results of two tests using a distribution network are presented in the paper in order to show the ability of the proposed algorithm. ©2009 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A decentralized solution method to the AC power flow problem in power systems with interconnected areas is presented. The proposed methodology allows finding the operation point of a particular area without explicit knowledge of network data of adjacent areas, being only necessary to exchange border information related to the interconnection lines between areas. The methodology is based on the decomposition of the first-order optimality conditions of the AC power flow, which is formulated as a nonlinear programming problem. A 9-bus didactic system, the IEEE Three Area RTS-96 and the IEEE 118 bus test systems are used in order to show the operation and effectiveness of the distributed AC power flow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper adjusts decentralized OPF optimization to the AC power flow problem in power systems with interconnected areas operated by diferent transmission system operators (TSO). The proposed methodology allows finding the operation point of a particular area without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. The methodology is based on the decomposition of the first-order optimality conditions of the AC power flow, which is formulated as a nonlinear programming problem. To allow better visualization of the concept of independent operation of each TSO, an artificial neural network have been used for computing border information of the interconnected TSOs. A multi-area Power Flow tool can be seen as a basic building block able to address a large number of problems under a multi-TSO competitive market philosophy. The IEEE RTS-96 power system is used in order to show the operation and effectiveness of the decentralized AC Power Flow. ©2010 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An enhanced genetic algorithm (EGA) is applied to solve the long-term transmission expansion planning (LTTEP) problem. The following characteristics of the proposed EGA to solve the static and multistage LTTEP problem are presented, (1) generation of an initial population using fast, efficient heuristic algorithms, (2) better implementation of the local improvement phase and (3) efficient solution of linear programming problems (LPs). Critical comparative analysis is made between the proposed genetic algorithm and traditional genetic algorithms. Results using some known systems show that the proposed EGA presented higher efficiency in solving the static and multistage LTTEP problem, solving a smaller number of linear programming problems to find the optimal solutions and thus finding a better solution to the multistage LTTEP problem. Copyright © 2012 Luis A. Gallego et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The optimal reactive dispatch problem is a nonlinear programming problem containing continuous and discrete control variables. Owing to the difficulty caused by discrete variables, this problem is usually solved assuming all variables as continuous variables, therefore the original discrete variables are rounded off to the closest discrete value. This approach may provide solutions far from optimal or even unfeasible solutions. This paper presents an efficient handling of discrete variables by penalty function so that the problem becomes continuous and differentiable. Simulations with the IEEE test systems were performed showing the efficiency of the proposed approach. © 1969-2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEB