45 resultados para Bartington MS2E1 surface sanning sensor
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bacterial cellulose (BC) has established to be a remarkably versatile biomaterial and can be used in wide variety of applied scientific endeavors, especially for medical devices. In fact, biomedical devices recently have gained a significant amount of attention because of increased interesting tissue-engineered products for both wound care and the regeneration of damaged or diseased organs. The architecture of BC materials can be engineered over length scales ranging from nano to macro by controlling the biofabrication process, besides, surface modifications bring a vital role in in vivo performance of biomaterials. In this work, bacterial cellulose fermentation was modified with carbon nanotubes for sensor applications and diseases diagnostic. SEM images showed that polymer modified-carbon nanotube (PVOH-carbon nanotube) produced well dispersed system and without agglomeration. Influences of carbon nanotube in bacterial cellulose were analyzed by FTIR. TGA showed higher thermal properties of developed bionanocomposites.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present work shows a study about the growing of ZnO nanorods by chemical bath deposition (CBD) and its application as gas sensor. It was prepared ZnO nanorods and Au decorated ZnO nanorods and the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and gas sensing response measurements. The results obtained by XRD show the growth of ZnO phase. It was possible to observe the formation of uniform dense well-aligned ZnO nanorods. The results obtained also revealed that Ag nanoparticles have decorated the surface of ZnO nanorods successfully. Au nanoparticles with diameter of a few nanometers were distributed over the ZnO surface nanorods. The gas sensing response measurements showed a behavior of n type semiconductor. Furthermore, the Au-functionalized ZnO nanorods gas sensors showed a considerably enhanced response at 250 and 300 °C.
Resumo:
A biomimetic sensor is proposed as a promising new analytical method for determination of norfloxacin (NF) in pharmaceuticals. The sensor was prepared by modifying a glassy carbon electrode surface with a Nafion® membrane doped with poly(copper phthalocyanine) complex [poly-CuPc]. Amperometric measurements carried out with the sensor under an applied potential of -0.05 V vs Ag|AgCl in 0.1 mol L-1 acetic acid containing 1.5 × 10-3 mol L-1 hydrogen peroxide showed a linear response range from 2.0 × 10-4 to 1.2 × 10-3 mol L-1. Selectivity and interference studies were also performed. A sensor response mechanism is proposed, based on the experimental evidence. Recovery studies were carried out using environmental samples, in order to evaluate the sensor’s potential for use with these sample classes. Finally, sensor performance was evaluated using analyses of commercial formulations.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)