52 resultados para Bacterial cells
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Regulation of chromosome inheritance is essential to ensure proper transmission of genetic information. To accomplish accurate genome segregation, cells organize their chromosomes and actively separate them prior to cytokinesis. In Bacillus subtilis the Spo0J protein is required for accurate chromosome segregation and it regulates the developmental switch from vegetative growth to sporulation. Spo0J is a DNA-binding protein that recognizes at least eight identified parS sites located near the origin of replication. As judged by fluorescence microscopy, Spo0J forms discrete foci associated with the oriC region of the chromosome throughout the cell cycle. In an attempt to determine the mechanisms utilized by Spo0J to facilitate productive chromosome segregation, we have investigated the DNA binding activity of Spo0J. In vivo we find Spo0J associates with several kilobases of DNA flanking its specific binding sites (parS) through a parS-dependent nucleation event that promotes lateral spreading of Spo0J along the chromosome. Using purified components we find that Spo0J has the ability to coat non-specific DNA substrates. These 'Spo0J domains' provide large structures near oriC that could potentially demark, organize or localize the origin region of the chromosome.
Resumo:
In the present work, we report the use of bacterial colonies to optimize macroarray technique. The devised system is significantly cheaper than other methods available to detect large-scale differential gene expression. Recombinant Escherichia coli clones containing plasmid-encoded copies of 4,608 individual expressed sequence tag (ESTs) were robotically spotted onto nylon membranes that were incubated for 6 and 12 h to allow the bacteria to grow and, consequently, amplify the cloned ESTs. The membranes were then hybridized with a beta-lactamase gene specific probe from the recombinant plasmid and, subsequently, phosphorimaged to quantify the microbial cells. Variance analysis demonstrated that the spot hybridization signal intensity was similar for 3,954 ESTs (85.8%) after 6 h of bacterial growth. Membranes spotted with bacteria colonies grown for 12 h had 4,017 ESTs (87.2%) with comparable signal intensity but the signal to noise ratio was fivefold higher. Taken together, the results of this study indicate that it is possible to investigate large-scale gene expression using macroarrays based on bacterial colonies grown for 6 h onto membranes.
Resumo:
The mechanisms by which arthritis-provoking pathogens such as Yersinia enterocolitica interact with the human immune system to produce inflammatory synovitis are not well known. One of the immunomodulating mechanisms used against these pathogens is the polyclonal activation of lymphocytes. In this study, we investigated the extent of the B-lymphocyte activation induced in mice by a strain of Y. enterocolitica O:3 (FCF 526) isolated from a patient with arthritis, and compared it with two other strains, a virulent one (FCF 397[+]) isolated from a patient without arthritis and its plasmidless isogenic pair (FCF397[-]). Also we investigated the production of autoantibodies in mice infected with these different strains. SPF Swiss mice were infected intravenously with a suspension of Y. enterocolitica . Spleen cells were taken on days 7, 14, 21 and 28 after infection and the number of cells secreting nonspecific and specific antibodies of IgG 1 , IgG 2a , IgG 2b , IgG 3 , IgM and IgA isotypes were determined by the ELISPOT technique. The presence of autoantibodies in mouse serum was investigated by the dot-blot assay. The pattern of infection of the three bacterial strains were almost the same. We observed a general increase in the number of nonspecific Ig-secreting cells with all three strains, and the greatest increases observed were in the IgG 2a and IgG 3 isotypes. Only a small fraction of the immunoglobulins detected were antibacterial, suggesting that the rest resulted from polyclonal B cell activation. The strain isolated from the patient with arthritis (FCF526) induced the greatest production of autoantibodies, coinciding with the period in which the greatest activation of nonspecific B lymphocytes was seen. There were no signs of arthritis or inflammation in the joints of the infected animals. Based on our results, we were unable to determine whether there is an association between the arthritogenic capability of Y. enterocolitica and polyclonal activation of B cells.
Resumo:
Propolis is a honeybee product that has been used since ancient times because of its therapeutic effects. It can be used in the development of alternative therapies for the treatment of many diseases, and because propolis shows antibacterial action, this work was carried out in order to investigate a possible synergism between propolis and antibiotics acting on DNA (ciprofloxacin and norfloxacin) and on the metabolism (cotrimoxazole) against Salmonella Typhi. Propolis samples collected in Brazil and Bulgaria were compared in these assays, and the synergism was investigated by using 1/2 and 1/4 of the minimal inhibitory concentration for propolis and antibiotics, evaluating the number of viable cells according to the incubation time. Brazilian and Bulgarian propolis showed antibacterial activity, but no synergistic effects with the three tested antibiotics were seen. Previous works by our laboratory have revealed that propolis has synergistic effects with antibiotics, acting on the bacterial wall and ribosome, but it does not seem to interact with antibiotics acting on DNA or folic acid, and only a bacteriostatic action was seen in these assay conditions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Marine and freshwater stingrays are characterized by the presence of one to three mineralized serrated stingers on the tail, which are covered by epidermal cells secreting venom. When these animals are dorsally touched, the stinger can be introduced into the aggressor by a whip reflex mechanism of the tail, causing severe mechanical injuries and inoculating the venom. Accidents in humans are frequent causing intense local pain, oedema and erythema. Bacterial secondary infection is also common. In addition, injuries involving freshwater stingrays frequently cause a persistent cutaneous necrosis. The exact localization of the venom secretory epidermal cells in the stinger is controversial, but it is known that it is preferentially located in the ventrolateral grooves. A comparative morphological analysis of the stinger epidermal tissue of different marine and freshwater Brazilian stingray species was carried out. The results indicate that in freshwater species there is a larger number of protein secretory cells, of two different types, spread over the whole stinger epidermis, while in marine species the protein secretory cells are located only around or inside the stinger ventrolateral grooves. These differences between the stingers of the two groups can justify the more severe envenomation accidents with the freshwater species when compared with the marine species. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Xylella fastidiosa is a phytopathogen that causes diseases in different plant species. The development of disease symptoms is associated to the blockage of the xylem vessels caused by biofilm formation. In this study, we evaluated the sensitivity of biofilm and planktonic cells to copper, one of the most important antimicrobial agents used in agriculture. We measured the exopolysaccharides (EPS) content in biofilm and planktonic cells and used real-time reverse transcription polymerase chain reaction to evaluate the expression of the genes encoding proteins involved in cation/multidrug extrusion (acrA/B, mexE/czcA, and metI) and others associated with different copper resistance mechanisms (copB, cutA1, cutA2, and cutC) in the X. fastidiosa biofilm formed in two different media. We confirmed that biofilms are less susceptible to copper than planktonic cells. The amount of EPS seems to be directly related to the resistance and it varies according to the media where the cells are grown. The same was observed for gene expression. Nevertheless, some genes seem to have a greater importance in biofilm cells resistance to copper. Our results suggest a synergistic effect between diffusion barriers and other mechanisms associated with bacterial resistance in this phytopathogen. These mechanisms are important for a bacterium that is constantly under stress conditions in the host.
Resumo:
A DNA vaccine based on the heat-shock protein 65 Mycobacterium leprae gene (pHSP65) presented a prophylactic and therapeutic effect in an experimental model of tuberculosis. In this paper, we addressed the question of which protective mechanisms are activated in Mycobacterium tuberculosis-infected mice after immune therapy with pHSP65. We evaluated activation of the cellular immune response in the lungs of infected mice 30 days after infection (initiation of immune therapy) and in those of uninfected mice. After 70 days (end of immune therapy), the immune responses of infected untreated mice, infected pHSP65-treated mice and infected pCDNA3-treated mice were also evaluated. Our results show that the most significant effect of pHSP65 was the stimulation of CD8+ lung cell activation, interferon-γ recovery and reduction of lung injury. There was also partial restoration of the production of tumour necrosis factor-α. Treatment with pcDNA3 vector also induced an immune stimulatory effect. However, only infected pHSP65-treated mice were able to produce significant levels of interferon-γ and to restrict the growth of bacilli.
Resumo:
The Acidithiobacillus ferrooxidans periplasmic space is known to have proteins involved in the respiratory chains. There are no reports about the expression of the periplasmic proteins in A. ferrooxidans cells attached to chalcopyrite. In this preliminary work, it was compared the periplasmic protein profiles of A. ferrooxidans planktonic and attached cells after exposure to chalcopyrite for 2 hours. The bacterial response to chalcopyrite was investigated by a proteomic approach (two- dimensional gel electrophoresis and mass spectrometry). Four proteins differentially expressed between planktonic and attached cells after exposure to chalcopyrite were identified. Two of these proteins, repressed in chalcopyrite- attached cells, were both identified as superoxide dismutase, whereas the single strand binding protein (SSB) and the PspA/IM30 protein were induced. These results showed that A. ferrooxidans chalcopyrite- attached and planktonic cells show differential expression of the periplasmic proteins and that a proteomic approach can provide a valuable tool to detect proteins related to the A. ferrooxidans response to attachment to the mineral substrates. © (2009) Trans Tech Publications.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of chondroitin sulfate (1% w/w) to the culture medium before the bacteria are inoculated. Besides, biomimetic precipitation of calcium phosphate of biological interest from simulated body fluid on bacterial cellulose was studied. Chondroitin sulfate influences in bacterial cellulose were analyzed using transmission infrared spectroscopy (FTIR), XRD (X-ray diffraction) and scanning electron microscopy (SEM). FTIR analysis showed interaction between chondroitin sulfate, bacterial cellulose and calcium phosphate and XRD demonstrated amorphous calcium phosphate and carbonated apatite on bacterial cellulose nanocomposites. SEM images confirmed incorporation of calcium phosphate in bacterial celluloe nanocomposite surface and uniform spherical calcium phosphate particles. Future experiments with cells adhesion and viability are in course.
Resumo:
Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of applied scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of hyaluronic acid and gelatin (1% w/w) to the culture medium before the bacteria is inoculated. Hyaluronic acid and gelatin influence in bacterial cellulose was analyzed using Transmission Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Adhesion and viability studies with human dental pulp stem cells using natural bacterial cellulose/hyaluronic acid as scaffolds for regenerative medicine are presented for the first time in this work. MTT viability assays show higher cell adhesion in bacterial cellulose/gelatin and bacterial cellulose/ hyaluronic acid scaffolds over time with differences due to fiber agglomeration in bacterial cellulose/gelatin. Confocal microscopy images showed that the cell were adhered and well distributed within the fibers in both types of scaffolds.