83 resultados para Automatic Inference
Resumo:
An overview is given on the possibility of controlling the status of circuit breakers (CB) in a substations with the use of a knowledge base that relates some of the operation magnitudes, mixing status variables with time variables and fuzzy sets. It is shown that even when all the magnitudes to be controlled cannot be included in the analysis, it is possible to control the desired status while supervising some important magnitudes as the voltage, power factor, and harmonic distortion, as well as the present status.
Resumo:
This paper presents a new methodology for the adjustment of fuzzy inference systems. A novel approach, which uses unconstrained optimization techniques, is developed in order to adjust the free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through an estimation of time series. More specifically, the Mackey-Glass chaotic time series estimation is used for the validation of the proposed methodology.
Resumo:
Semi-automatic building detection and extraction is a topic of growing interest due to its potential application in such areas as cadastral information systems, cartographic revision, and GIS. One of the existing strategies for building extraction is to use a digital surface model (DSM) represented by a cloud of known points on a visible surface, and comprising features such as trees or buildings. Conventional surface modeling using stereo-matching techniques has its drawbacks, the most obvious being the effect of building height on perspective, shadows, and occlusions. The laser scanner, a recently developed technological tool, can collect accurate DSMs with high spatial frequency. This paper presents a methodology for semi-automatic modeling of buildings which combines a region-growing algorithm with line-detection methods applied over the DSM.
Resumo:
This paper presents a new methodology to evaluate in a predictive way the reliability of distribution systems, considering the impact of automatic recloser switches. The developed algorithm is based on state enumeration techniques with Markovian models and on the minimal cut set theory. Some computational aspects related with the implementation of the proposed algorithm in typical distribution networks are also discussed. The description of the proposed approach is carried out using a sample test system. The results obtained with a typical configuration of a Brazilian system (EDP Bandeirante Energia S.A.) are presented and discussed.
Resumo:
This article presents an automatic methodology for extraction of road seeds from high-resolution aerial images. The method is based on a set of four road objects and another set of connection rules among road objects. Each road object is a local representation of an approximately straight road fragment and its construction is based on a combination of polygons describing all relevant image edges, according to some rules embodying road knowledge. Each one of the road seeds is composed by a sequence of connected road objects, in which each sequence of this type can be geometrically structured as a chain of contiguous quadrilaterals. Experiments carried out with high-resolution aerial images showed that the proposed methodology is very promising in extracting road seeds. This article presents the fundamentals of the method and the experimental results, as well.
Resumo:
An intelligent system that emulates human decision behaviour based on visual data acquisition is proposed. The approach is useful in applications where images are used to supply information to specialists who will choose suitable actions. An artificial neural classifier aids a fuzzy decision support system to deal with uncertainty and imprecision present in available information. Advantages of both techniques are exploited complementarily. As an example, this method was applied in automatic focus checking and adjustment in video monitor manufacturing. Copyright © 2005 IFAC.
Resumo:
This work involved the development of a smart system dedicated to surface burning detection in the grinding process through constant monitoring of the process by acoustic emission and electrical power signals. A program in Visual Basic® for Windows® was developed, which collects the signals through an analog-digital converter and further processes them using burning detection algorithms already known. Three other parameters are proposed here and a comparative study carried out. When burning occurs, the newly developed software program sends a control signal warning the operator or interrupting the process, and delivers process information via the Internet. Parallel to this, the user can also interfere in the process via Internet, changing parameters and/or monitoring the grinding process. The findings of a comparative study of the various parameters are also discussed here. Copyright © 2006 by ABCM.
Resumo:
The main purpose of this work is the development of computational tools in order to assist the on-line automatic detection of burn in the surface grinding process. Most of the parameters currently employed in the burning recognition (DPO, FKS, DPKS, DIFP, among others) do not incorporate routines for automatic selection of the grinding passes, therefore, requiring the user's interference for the choice of the active region. Several methods were employed in the passes extraction; however, those with the best results are presented in this article. Tests carried out in a surface-grinding machine have shown the success of the algorithms developed for pass extraction. Copyright © 2007 by ABCM.
Resumo:
Methods based on visual estimation still is the most widely used analysis of the distances that is covered by soccer players during matches, and most description available in the literature were obtained using such an approach. Recently, systems based on computer vision techniques have appeared and the very first results are available for comparisons. The aim of the present study was to analyse the distances covered by Brazilian soccer players and compare the results to the European players', both data measured by automatic tracking system. Four regular Brazilian First Division Championship matches between different teams were filmed. Applying a previously developed automatic tracking system (DVideo, Campinas, Brazil), the results of 55 outline players participated in the whole game (n = 55) are presented. The results of mean distances covered, standard deviations (s) and coefficient of variation (cv) after 90 minutes were 10,012 m, s = 1,024 m and cv = 10.2%, respectively. The results of three-way ANOVA according to playing positions, showed that the distances covered by external defender (10642 ± 663 m), central midfielders (10476 ± 702 m) and external midfielders (10598 ± 890 m) were greater than forwards (9612 ± 772 m) and forwards covered greater distances than central defenders (9029 ± 860 m). The greater distances were covered in standing, walking, or jogging, 5537 ± 263 m, followed by moderate-speed running, 1731 ± 399 m; low speed running, 1615 ± 351 m; high-speed running, 691 ± 190 m and sprinting, 437 ± 171 m. Mean distance covered in the first half was 5,173 m (s = 394 m, cv = 7.6%) highly significant greater (p < 0.001) than the mean value 4,808 m (s = 375 m, cv = 7.8%) in the second half. A minute-by-minute analysis revealed that after eight minutes of the second half, player performance has already decreased and this reduction is maintained throughout the second half. ©Journal of Sports Science and Medicine (2007).
Resumo:
This paper presents a new methodology for the adjustment of fuzzy inference systems, which uses technique based on error back-propagation method. The free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules, are automatically adjusted. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through estimation of time series and by a mathematical modeling problem. More specifically, the Mackey-Glass chaotic time series is used for the validation of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
Most of the tasks in genome annotation can be at least partially automated. Since this annotation is time-consuming, facilitating some parts of the process - thus freeing the specialist to carry out more valuable tasks - has been the motivation of many tools and annotation environments. In particular, annotation of protein function can benefit from knowledge about enzymatic processes. The use of sequence homology alone is not a good approach to derive this knowledge when there are only a few homologues of the sequence to be annotated. The alternative is to use motifs. This paper uses a symbolic machine learning approach to derive rules for the classification of enzymes according to the Enzyme Commission (EC). Our results show that, for the top class, the average global classification error is 3.13%. Our technique also produces a set of rules relating structural to functional information, which is important to understand the protein tridimensional structure and determine its biological function. © 2009 Springer Berlin Heidelberg.
Resumo:
This paper deals with the subject-matter of teaching immaterial issues like power system dynamics where the phenomena and events are not sense-perceptible. The dynamics of the power system are recognized as analogous to the dynamics of a simple mechanical pendulum taken into account the well-known classical model for the synchronous machine. It is shown that even for more sophisticated models including flux decay and Automatic Voltage Regulator the mechanical device can be taken as an analogous, since provided some considerations about variation and control of the pendulum length using certain control laws. The resulting mathematical model represents a mechanical system that can be built for use in laboratory teaching of power system dynamics. © 2010 Praise Worthy Prize S.r.l. - All rights reserved.
Resumo:
In this work we propose a novel automatic cast iron segmentation approach based on the Optimum-Path Forest classifier (OPF). Microscopic images from nodular, gray and malleable cast irons are segmented using OPF, and Support Vector Machines (SVM) with Radial Basis Function and SVM without kernel mapping. Results show accurate and fast segmented images, in which OPF outperformed SVMs. Our work is the first into applying OPF for automatic cast iron segmentation. © 2010 Springer-Verlag.
Resumo:
The digital image processing has been applied in several areas, especially where it is necessary use tools for feature extraction and to get patterns of the studied images. In an initial stage, the segmentation is used to separate the image in parts that represents a interest object, that may be used in a specific study. There are several methods that intends to perform such task, but is difficult to find a method that can easily adapt to different type of images, that often are very complex or specific. To resolve this problem, this project aims to presents a adaptable segmentation method, that can be applied to different type of images, providing an better segmentation. The proposed method is based in a model of automatic multilevel thresholding and considers techniques of group histogram quantization, analysis of the histogram slope percentage and calculation of maximum entropy to define the threshold. The technique was applied to segment the cell core and potential rejection of tissue in myocardial images of biopsies from cardiac transplant. The results are significant in comparison with those provided by one of the best known segmentation methods available in the literature. © 2010 IEEE.