90 resultados para Attic images
Resumo:
This paper presents a technique for real-time crowd density estimation based on textures of crowd images. In this technique, the current image from a sequence of input images is classified into a crowd density class. Then, the classification is corrected by a low-pass filter based on the crowd density classification of the last n images of the input sequence. The technique obtained 73.89% of correct classification in a real-time application on a sequence of 9892 crowd images. Distributed processing was used in order to obtain real-time performance. © Springer-Verlag Berlin Heidelberg 2005.
Resumo:
Oral administration with solid dosage forms is a common route in the drug therapy widely used. The drug release by the disintegration process occurs in several gastrointestinal tract (GIT) regions. AC Biosusceptometry (ACB) was originally proposal to characterize the disintegration process of tablets in vitro and in the human stomach, through changes in magnetic signals. The aim of this work was to employ a multisensor ACB system to monitoring magnetic tablets and capsules in the human GIT and to obtain the magnetic images of the disintegration process. The ACB showed accuracy to quantify the gastric residence time, the intestinal transit time and the magnetic images allowed to visualize the disintegration of magnetic formulations in the GIT. The ACB is a non-invasive, radiation free technique, completely safe and harmless to the volunteers and had demonstrated potential to evaluate pharmaceutical dosage forms in the human gastrointestinal tract. © 2005 IEEE.
Resumo:
This paper presents an automatic methodology for road network extraction from medium-and high-resolution aerial images. It is based on two steps. In the first step, the road seeds (i.e., road segments) are extracted using a set of four road objects and another set of connection rules among road objects. Each road object is a local representation of an approximately straight road fragment and its construction is based on a combination of polygons describing all relevant image edges, according to some rules embodying road knowledge. Each road seed is composed by a sequence of connected road objects in which each sequence of this type can be geometrically structured as a chain of contiguous quadrilaterals. In the second step, two strategies for road completion are applied in order to generate the complete road network. The first strategy is based on two basic perceptual grouping rules, i.e., proximity and collinearity rules, which allow the sequential reconstruction of gaps between every pair of disconnected road segments. This strategy does not allow the reconstruction of road crossings, but it allows the extraction of road centerlines from the contiguous quadrilaterals representing connected road segments. The second strategy for road completion aims at reconstructing road crossings. Firstly, the road centerlines are used to find reference points for road crossings, which are their approximate positions. Then these points are used to extract polygons representing the contours of road crossings. This paper presents the proposed methodology and experimental results. © Pleiades Publishing, Inc. 2006.
Resumo:
The radiopacity of esthetic restorative materials has been established as an important requirement, improving the radiographic diagnosis. The aim of this study was to evaluate the radiopacity of six restorative materials using a direct digital image system, comparing them to the dental tissues (enamel-dentin), expressed as equivalent thickness of aluminum (millimeters of aluminum). Five specimens of each material were made. Three 2-mm thick longitudinal sections were cut from an intact extracted permanent molar tooth (including enamel and dentin). An aluminum step wedge with 9 steps was used. The samples of different materials were placed on a phosphor plate together with a tooth section, aluminum step wedge and metal code letter, and were exposed using a dental x-ray unit. Five measurements of radiographic density were obtained from each image of each item assessed (restorative material, enamel, dentin, each step of the aluminum step wedge) and the mean of these values was calculated. Radiopacity values were subsequently calculated as equivalents of aluminum thickness. Analysis of variance (ANOVA) indicated significant differences in radiopacity values among the materials (P<0.0001). The radiopacity values of the restorative materials evaluated were, in decreasing order: TPH, F2000, Synergy, Prisma Flow, Degufill, Luxat. Only Luxat had significantly lower radiopacity values than dentin. One material (Degufill) had similar radiopacity values to enamel and four (TPH, F2000, Synergy and Prisma Flow) had significantly higher radiopacity values than enamel. In conclusion, to assess the adequacy of posterior composite restorations it is important that the restorative material to be used has enough radiopacity, in order to be easily distinguished from the tooth structure in the radiographic image. Knowledge on the radiopacity of different materials helps professionals to select the most suitable material, along with other properties such as biocompatibility, adhesion and esthetic.
Resumo:
Purpose: To determine palpebral dimensions and development in Brazilian children using digital images. Methods: An observational study was performed measuring eyelid angles, palpebral fissure area and interpupillary distance in 220 children aged from 4 to 72 months. Digital images were obtained with a Sony Lithium movie camera (Sony DCR-TRV110, Brazil) in frontal view from awake children in primary ocular position; the object of observation was located at pupil height. The images were saved to tape, transferred to a Macintosh G4 (Apple Computer Inc., USA) computer and processed using NIH 1.58 software (NTIS, 5285 Port Royal Rd., Springfield, VA 22161, USA). Data were submitted to statistical analysis. Results: All parameters studied increased with age. The outer palpebral angle was greater than the inner, and palpebral fissure and angles showed greater changes between 4 and 5 months old and at around 24 to 36 months. Conclusion: There are significant variations in palpebral dimensions in children under 72 months old, especially around 24 to 36 months. Copyright © 2006 Informa Healthcare.
Resumo:
Cleidocranial dysplasia (CCD) is a rare syndrome usually caused by an autosomal dominant gene, although 40% of cases of CCD appear spontaneously with no apparent genetic cause. This condition is characterized by several cranial malformations and underdevelopment, absence of the clavicles, and multiple supernumerary and impacted permanent teeth. The diagnosis of this condition is usually based on the presence of the main features (supernumerary teeth, partial or total absence of one or both the clavicles, and bony malformations) and on clinical and familial evidence. The bony and dental features of CCD may be visualized on radiographic images of the face and skull. Here, we present a familial case of CCD and discuss the importance of dental radiographs in diagnosis of the condition.
Resumo:
The purpose of this paper is to introduce a new approach for edge detection in gray shaded images. The proposed approach is based on the fuzzy number theory. The idea is to deal with the uncertainties concerning the gray shades making up the image, and thus calculate the appropriateness of the pixels in relation to an homogeneous region around them. The pixels not belonging to the region are then classified as border pixels. The results have shown that the technique is simple, computationally efficient and with good results when compared with both the traditional border detectors and the fuzzy edge detectors. © 2007 IEEE.
Resumo:
This paper seeks to apply a routine for highways detection through the mathematical morphology tools in high resolution image. The Mathematical Morphology theory consists of describing structures geometric presents quantitatively in the image (targets or features). This explains the use of the Mathematical Morphology in this work. As high resolution images will be used, the largest difficulty in the highways detection process is the presence of trees and automobiles in the borders tracks. Like this, for the obtaining of good results through the use of morphologic tools was necessary to choose the structuring element appropriately to be used in the functions. Through the appropriate choice of the morphologic operators and structuring elements it was possible to detect the highways tracks. The linear feature detection using mathematical morphology techniques, can contribute in cartographic applications, as cartographic products updating.
Resumo:
Medical images are private to doctor and patient. Digital medical images should be protected against unauthorized viewers. One way to protect digital medical images is using cryptography to encrypt the images. This paper proposes a method for encrypting medical images with a traditional symmetric cryptosystem. We use biometrics to protect the cryptographic key. Both encrypted image and cryptographic key can be transmitted over public networks with security and only the person that owns the biometrics information used in key protection can decrypt the medical image. © Springer Science+Business Media B.V. 2008.
Resumo:
The purpose of this paper is to introduce a new approach for edge detection in grey shaded images. The proposed approach is based on the fuzzy number theory. The idea is to deal with the uncertainties concerning the grey shades making up the image and, thus, calculate the appropriateness of the pixels in relation to a homogeneous region around them. The pixels not belonging to the region are then classified as border pixels. The results have shown that the technique is simple, computationally efficient and with good results when compared with both the traditional border detectors and the fuzzy edge detectors. Copyright © 2009, Inderscience Publishers.
Resumo:
This paper presents the study of computational methods applied to histological texture analysis in order to identify plant species, a very difficult task due to the great similarity among some species and presence of irregularities in a given species. Experiments were performed considering 300 ×300 texture windows extracted from adaxial surface epidermis from eight species. Different texture methods were evaluated using Linear Discriminant Analysis (LDA). Results showed that methods based on complexity analysis perform a better texture discrimination, so conducting to a more accurate identification of plant species. © 2009 Springer Berlin Heidelberg.
Resumo:
The aim of this study was to evaluate whether digitized images obtained from occlusal radiographs taken with low or over dose of radiation could be improved with the aid of computer software for digital treatment. Thirteen occlusal radiographs of a dry skull were taken employing 13 different exposure times. The radiographs were digitized and then manipulated with the program for image editing. 143 evaluations were performed by specialists in dental radiology who classified radiographs as appropriate or not appropriate for interpretation. Test Z was used for statistical analysis of the data and the results showed that it is possible to manipulate digitized radiographic images taken with 75% of the ideal exposure time and to make them suitable for interpretation and diagnosis. Conversely, it was concluded that the over exposed images, 57.50% above the standard exposure time, were inadequate.
Resumo:
This research proposes to apply techniques of Mathematics Morphology to extract highways in digital images of high resolution, targeting the upgrade of cartographic products. Remote Sensing data and Mathematical Morphological techniques were integrated in the process of extraction. Mathematical Morphology's objective is to improve and extract the relevant information of the visual image. In order to test the proposed approach some morphological operators related to preprocess, were applied to the original images. Routines were implemented in the MATLAB environment. Results indicated good performances by the implemented operators. The integration of the technologies aimed to implement the semiautomatic extraction of highways with the purpose to use them in processes of cartographic updating.
Resumo:
The digital image processing has been applied in several areas, especially where it is necessary use tools for feature extraction and to get patterns of the studied images. In an initial stage, the segmentation is used to separate the image in parts that represents a interest object, that may be used in a specific study. There are several methods that intends to perform such task, but is difficult to find a method that can easily adapt to different type of images, that often are very complex or specific. To resolve this problem, this project aims to presents a adaptable segmentation method, that can be applied to different type of images, providing an better segmentation. The proposed method is based in a model of automatic multilevel thresholding and considers techniques of group histogram quantization, analysis of the histogram slope percentage and calculation of maximum entropy to define the threshold. The technique was applied to segment the cell core and potential rejection of tissue in myocardial images of biopsies from cardiac transplant. The results are significant in comparison with those provided by one of the best known segmentation methods available in the literature. © 2010 IEEE.
Resumo:
Aim: To assess the bone mineral density on conventional and digitized images, comparing whether different parameters of digitization and storage change these values. Methods: Twenty radiographs were taken from five partially dentulous dry mandibles with an aluminum 7-mm stepwedge placed on the superior edge of the film. After processing, the films were digitized with a resolution of 600 and 2,400 d.p.i. and saved as TIFF and JPEG files. On every conventional and digitized image, circular regions of interest were selected for densitometry and radiographic contrast analysis. Results: Pearson's correlation coefficient showed a significant and strong mean gray values association between digitized and conventional images, differing from radiographic contrast that did not show a significant association. ANOVA did not reveal a statistically significant difference in bone density and radiographic contrast among the four digitized image groups, but the conventional image contrast was significantly lower. Conclusions: Bone mineral density did not differ in both conventional and digitized images. The parameters of image compression and resolution, tested in this study, did not change the results of densitometry and digitization process increased the radiographic contrast.