90 resultados para Atomic scattering length
Resumo:
Numerical simulations based on the time-dependent mean-field Gross-Pitaevskii equation was performed to explain the dynamics of collapsing and exploding Bose-Einstein condensates (BEC) of 85Rb atoms. The atomic interaction was manipulated by an external magnetic field via a Feshbach resonance. On changing the scattering length of atomic interaction from a positive to a large negative value, the condensate collapsed and ejected atoms via explosion.
Resumo:
Natural scales determine the physics of quantum few-body systems with short-range interactions. Thus, the scaling limit is found when the ratio between the scattering length and the interaction range tends to infinity, while the ratio between the physical scales are kept fixed. From the formal point of view, the relation of the scaling limit and the renormalization aspects of a few-body model with a zero-range interaction, through the derivation of subtracted three-body T-matrix equations that are renormalization-group invariant.
Resumo:
We perform a systematic numerical study, based on the time-dependent Gross-Pitaevskii equation, of jet formation in collapsing and exploding Bose-Einstein condensates as in the experiment by Donley et al (2001 Nature 412 295). In the actual experiment, via a Feshbach resonance, the scattering length of atomic interaction was suddenly changed from positive to negative on a pre-formed condensate. Consequently, the condensate collapsed and ejected atoms via explosion. On disruption of the collapse by suddenly changing the scattering length to zero, a radial jet of atoms was formed in the experiment. We present a satisfactory account of jet formation under the experimental conditions and also make predictions beyond experimental conditions which can be verified in future experiments.
Resumo:
By direct numerical simulation of the time-dependent Gross-Pitaevskii equation, we study different aspects of the localization of a noninteracting ideal Bose-Einstein condensate (BEC) in a one-dimensional bichromatic quasiperiodic optical-lattice potential. Such a quasiperiodic potential, used in a recent experiment on the localization of a BEC, can be formed by the superposition of two standing-wave polarized laser beams with different wavelengths. We investigate the effect of the variation of optical amplitudes and wavelengths on the localization of a noninteracting BEC. We also simulate the nonlinear dynamics when a harmonically trapped BEC is suddenly released into a quasiperiodic potential, as done experimentally in a laser speckle potential. We finally study the destruction of the localization in an interacting BEC due to the repulsion generated by a positive scattering length between the bosonic atoms. © 2009 The American Physical Society.
Resumo:
We study the statics and dynamics of a dipolar Bose-Einstein condensate (BEC) droplet bound by interspecies contact interaction in a trapped nondipolar BEC. Our findings are demonstrated in terms of stability plots of a dipolar 164Dy droplet bound in a trapped nondipolar 87Rb BEC with a variable number of 164Dy atoms and interspecies scattering length. A trapped nondipolar BEC of a fixed number of atoms can bind only a dipolar droplet containing fewer atoms than a critical number for the interspecies scattering length between two critical values. The shape and size (statics) as well as the small breathing oscillation (dynamics) of the dipolar BEC droplet are studied using numerical and variational solutions of a mean-field model. We also suggest an experimental procedure for achieving such a 164Dy droplet by relaxing the trap on the 164Dy BEC in a trapped binary 87Rb-164Dy mixture. © 2013 American Physical Society.
Resumo:
The generation of Faraday waves in superfluid Fermi-Bose mixtures in elongated traps is investigated. The generation of waves is achieved by periodically changing a parameter of the system in time. Two types of modulations of parameters are considered: a variation of the fermion-boson scattering length and the boson-boson scattering length. We predict the properties of the generated Faraday patterns and study the parameter regions where they can be excited. © 2013 American Physical Society.
Resumo:
Based on the time-dependent Gross-Pitaevskii equation we study the evolution of a collapsing and exploding Bose-Einstein condensate in different trap symmetries to see the effect of confinement on collapse and subsequent explosion, which can be verified in future experiments. We make a prediction for the evolution of the shape of the condensate and the number of atoms in it for different trap symmetries (cigar to pancake) as well as in the presence of an optical lattice potential. We also make a prediction for the jet formation in different cases when the collapse is suddenly terminated by changing the scattering length to zero via a Feshbach resonance. In addition to the usual global collapse to the center of the condensate, in the presence of an optical-lattice potential one could also have in certain cases independent collapse of parts of the condensate to local centers, which could be verified in experiments.
Resumo:
We apply the general principles of effective field theories to the construction of effective interactions suitable for few- and many-body calculations in a no-core shell model framework. We calculate the spectrum of systems with three and four two-component fermions in a harmonic trap. In the unitary limit, we find that three-particle results are within 10% of known semianalytical values even in small model spaces. The method is very general, and can be readily extended to other regimes, more particles, different species (e.g., protons and neutrons in nuclear physics), or more-component fermions (as well as bosons). As an illustration, we present calculations of the lowest-energy three-fermion states away from the unitary limit and find a possible inversion of parity in the ground state in the limit of trap size large compared to the scattering length. Furthermore, we investigate the lowest positive-parity states for four fermions, although we are limited by the dimensions we can currently handle in this case.
Resumo:
The usefulness of a scale-independent approach to identify Efimov states in three-body systems is shown by comparing such an approach with a realistic calculation in the case of three helium atoms. We show that the scaling limit is realized in practice in this case, and suggest its application to study other similar systems, including the case where two kinds of atoms are mixed. We also consider the observed large scattering length of the Rb-87 dimer to estimate the critical value of the ground-state energy of the corresponding trimer (greater than or equal to 1.5 mK), in order to allow for one Efimov state above the ground state.
Resumo:
We study the trajectory of Efimov states for a trapped three-boson system when the two-body scattering length a is changed. We show that these states follow the route virtual-bound-continuum resonance state when a is varied, respectively, from large positive to negative values. For a < 0, we include the triatomic continuum resonance effect to extend the three-body recombination length for trap temperatures greater than zero. For a > 0, we predict trimer binding energies based on the recombination length and the two-body scattering length.
Resumo:
We study solitons in the condensate trapped in a double-well potential with far-separated wells, when the s-wave scattering length has different signs in the two parts of the condensate. By employing the coupled-mode approximation it is shown that there are unusual stable bright solitons in the condensate, with the larger share of atoms being gathered in the repulsive part. Such unusual solitons derive their stability from the quantum tunneling and correspond to the strong coupling between the parts of the condensate. The ground state of the system, however, corresponds to weak coupling between the condensate parts, with the larger share of atoms being gathered in the attractive part of the condensate.
Resumo:
We use a time-dependent dynamical hydrodynamic model to study a collapse in a degenerate fermion-fermion mixture ( DFFM) of different atoms. Due to a strong Pauli-blocking repulsion among identical spin-polarized fermions at short distances, there cannot be a collapse for repulsive interspecies fermion fermion interaction. However, there can be a collapse for a sufficiently attractive interspecies fermion-fermion interaction in a DFFM of different atoms. Using a variational analysis and numerical solution of the hydrodynamic model, we study different aspects of collapse in such a DFFM initiated by a jump in the interspecies fermion-fermion interaction ( scattering length) to a large negative ( attractive) value using a Feshbach resonance. Suggestion for experiments of collapse in a DFFM of distinct atoms is made.
Resumo:
We consider the ground-state properties of mixed Bose-Einstein condensates of Rb-87 and Rb-85 atoms in the isotropic pancake trap for both signs of the interspecies scattering length. In the case of the repulsive interspecies interaction, there are the axially symmetric and symmetry-breaking ground states. The threshold for the symmetry-breaking transition, which is related to appearance of a zero dipole mode, is found numerically. For attractive interspecies interactions, the two condensates assume symmetric ground states for the numbers of atoms up to the collapse instability of the mixture.
Resumo:
The occurrence of a new limit cycle in few-body physics, expressing a universal scaling function relating the binding energies of two successive tetramer states, is revealed by considering a renormalized zero-range two-body interaction in bound state of four identical bosons. The tetramer energy spectrum is obtained by adding a boson to an Efimov bound state with energy B-3 in the unitary limit (for zero two-body binding energy or infinite two-body scattering length). Each excited N-th tetramer energy B-4((N)) is shown to slide along a scaling function as a short-range four-body scale is changed, emerging from the 3+1 threshold for a universal ratio B-4((N))/B-3 = 4.6, which does not depend on N. The new scale can also be revealed by a resonance in the atom-trimer recombination process.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)