133 resultados para Artefact removal
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The production of chlorine was investigated in the photoelectrocatalytic oxidation of a chloride-containing solution using a TiO(2) thin-film electrode biased at current density from 5 to 50 mA cm(-2) and illuminated by UV light. Such parameters as chloride concentrations from 0.001 to 0.10 mol L(-1), pH 2-12, and interfering salts were varied in this study in order to determine their effect on this oxidation process. At an optimum condition this photoelectrocatalytic method can produce active chlorine at levels compatible to water disinfections processes using a chloride concentration higher than 0.010 mol L(-1) at a pH of 4 and a current density of 30 mA cm(-2). The method was successfully applied to treat surface water collected from a Brazilian river. After 150 min of photoelectrocatalytic oxidation, we obtained a 90% reduction in total organic carbon removal, a 100% removal of turbidity, a 93% decrease in colour and a chemical oxygen demand (COD) removal of around 96% (N=3). The proposed technology based on photoelectrocatalytic oxidation was also tested in treating 250 mL of a solution containing 0.05 mol L(-1) NaCl and 50 mu g L(-1) of Microcystin aeruginosa. The bacteria is completely removed after 5 min of photoelectrocatalysis following an initial rate constant removal of -0.260 min(-1), suggesting that the present method could be considered as a promising alternative to chlorine-based disinfections. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Degradation of Disperse Orange 1, Disperse Red 1 and Disperse Red 13 dyes has been performed using electrochemical oxidation on Pt electrode, chemical chlorination and photoelectrochemical oxidation on Ti/TiO(2) thin film electrodes in NaCl or Na(2)SO(4) medium. 100% discoloration was obtained for all tested methods after 1 h of treatment. Faster color removal was obtained by photoelectrocatalytic oxidation in 0.1 mol L(-1) NaCl pH 4.0 under UV light and an applied potential of +1.0V (vs SCE reference electrode), which indicates also values around 60% of TOC removal. The conventional chlorination method and electrochemical oxidation on Pt electrode resulted in negligible reduction of TOC removal. All dyes showed positive mutagenic activity in the Salmonella/microsome assay with the strain TA98 in the absence and presence of S9 (exogenous metabolic activation). Nevertheless, there is complete reduction of the mutagenic activity after 1 h of photoelectrocatalytic oxidation, suggesting that this process would be good option to remove disperse azo dyes from aqueous media. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We have studied a new type of end-to-side nerve repair in rats. The healthy (donor) nerve was not divided but an epineural window was created. In our experiment, a nerve graft bridged the tibial nerve to the distal end of the divided peroneal nerve. Electrophysiological studies showed electrical impulses conducted through both end-to-side nerve junctions. Histological studies demonstrated axons leaving the lateral surface of the healthy (donor) nerve. Based on these observations, we suggest that end-to-side neurorrhaphy from a healthy nerve may bridge a neural deficit.
Resumo:
This study proposes a method for decontamination of acid drainage water from a uranium mine, as an alternative process to lime treatment. The research embodied the recovery of uranium with an ion-exchange resin, treatment of effluent resin with lime, or with inorganic adsorbents and biosorbents. The uranium decontamination level using the resin process was 94% and allowed the recovery of this element as a commercial product. Among the inorganic adsorbents studied, phosphogypsum was effective for Ra-226, Ra-228, and Pb-210 removal. Among the biosorbents, Sargassum sp.was superior in relation to its specific capacity to accumulate and remove Ra-226.
Resumo:
Water, compared with plasma at a pH of 7.4, is a weak acid. The addition of free water to a patient should have an acidifying effect (dilutional acidosis) and the removal of it, an alkalinizing effect (concentrational alkalosis). The specific effects of free water loss or gain in a relatively complex fluid such as plasma has, to the authors' knowledge, not been reported. This information would be useful in the interpretation of the effect of changes in free water in patients. Plasma samples from goats were either evaporated in a tonometer to 80% of baseline volume or hydrated by the addition of distilled water to 120% of baseline volume. The pH and partial pressure of carbon dioxide, sodium, potassium, ionized calcium, chloride, lactate, phosphorous, albumin, and total protein concentrations were measured. Actual base excess (ABE), standard bicarbonate, anion gap, strong ion difference, strong ion gap, unmeasured anions, and the effects of sodium, chloride, phosphate, and albumin changes on ABE were calculated. Most parameters changed 20% in proportion to the magnitude of dehydration or hydration. Bicarbonate concentration, however, increased only 11% in the evaporation trial and decreased only -2% in the dehydration trial. The evaporation trial was associated with a mild, but significant, metabolic alkalotic effect (ABE increased 3.2 mM/L), whereas the hydration trial was associated with a slight, insignificant metabolic acidotic effect (ABE decreased only 0.6 mM/L). The calculated free water ABE effect (change in sodium concentration) was offset by opposite changes in calculated chloride, lactate, phosphate, and albumin ABE effects.