39 resultados para Amazonian forest


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surveys were carried out in terra firme' forest, successional forest, buritirana' (palm vegetation) and shrub canga' (savanna). Extrafloral nectaries (EFNs) were present in 30 plant species belonging to 22 genera and 14 families. Nectary species represented 17.6-53.3% of the species samples in different areas, with local abundances varying from 19.1-50.0%. The percentage of species with EFNs was greater in the flora of the shrub canga than in the terra firme and successional forests. Nectary plants were more abundant in the shrub canga and successional forest. The high abundance of EFNs may be the result of intense foraging activity by ants on plants, leading to the formation of facultative mutualism. -from Authors

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Body temperatures and thermoregulatory behaviour of the teiid lizard Ameiva ameiva inhabiting the edge and the understory were studied in Central Amazonian forests Despite of differences in the thermal profile of the habitates. the mean body temperature was the some for active lizards observed at the edge or inside the forest. where only slight peculiarities in thermoregulatory behaviour were observed. A. ameiva is capable of maintaining body temperature significantly above microhabitat temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effects of local, regional and temporal factors structuring fish assemblages in Meridional Amazonian streams during the months of May (rainy season) and August (dry season) of 2008. To accomplish this task, 14 streams located in Serra do Expedito (Aripuanã River basin) were sampled along 30-m stretches. A total of 3,212 specimens distributed among five orders, 18 families, and 55 species were recorded. The fish assemblage structure in the streams presented variation among types of riparian vegetation (local factor) and watersheds (regional factor), but did not present variation between seasons (temporal factor) and stream order (regional factor). Larger streams with margins covered with pasture presented higher species richness and abundance than smaller streams with margins covered with forest. © 2012 Springer Science+Business Media B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite important progress on Amazonian floodplain research, the flooded forest of the Negro River igapó has been little investigated. In particular, no study has previously focused the linkage between fluvial geomorphology and the floristic variation across the course of the river. In this paper we describe and interpret relations between igapó forest, fluvial geomorphology and the spatial evolution of the igapó forest through the Holocene. Therefore, we investigate the effect of geomorphological units of the floodplain and channel patterns on tree diversity, composition and structural parameters of the late-successional igapó forest. Our results show that sites sharing almost identical flooding regime, exhibit variable tree assemblages, species richness and structural parameters such as basal area, tree density and tree heights, indicating a trend in which the geomorphologic styles seem to partially control the organization of igapó's tree communities. This can be also explained by the high variability of well-developed geomorphologic units in short distances and concentrated in small areas. In this dynamic the inputs from the species pool of tributary rivers play a crucial role, but also the depositional and erosional processes associated with the evolution of the floodplain during the Holocene may control floristic and structural components of the igapó forests. These results suggest that a comprehensive approach integrating floristic and geomorphologic methods is needed to understand the distribution of the complex vegetation patterns in complex floodplains such as the igapó of the Negro River. This combination of approaches may introduce a better comprehension of the temporal and spatial evolutionary analysis and a logic rationale to understand the vegetation distribution and variability in function of major landforms, soil distributions and hydrology. Thus, by integrating the past into macroecological analyses will sharpen our understanding of the underlying forces for contemporary floristic patterns along the inundation forests of the Negro River. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major Neotropical malaria vector, Anopheles darlingi, was reintroduced into the Iquitos, Loreto, Peru area during the early 1990s, where it displaced other anophelines and caused a major malaria epidemic. Since then, case numbers in Loreto have fluctuated, but annual increases have been reported since 2012. The population genetic structure of An. darlingi sampled before and after the introduction of long-lasting insecticidal nets (LLINs) was investigated to test the hypothesis of temporal population change (2006 vs. 2012). Current samples of An. darlingi were used to test the hypothesis of ecological adaptation to human modified (highway) compared with wild (riverine) habitat, linked to forest cover. In total, 693 An. darlingi from nine localities in Loreto, Peru area were genotyped using 13 microsatellite loci. To test the hypothesis of habitat differentiation in An. darlingi biting time patterns, HBR and EIR, four collections of An. darlingi from five localities (two riverine and three highway) were analysed. Analyses of microsatellite loci from seven (2006) and nine settlements (2012-2014) in the Iquitos area detected two distinctive populations with little overlap, although it is unclear whether this population replacement event is associated with LLIN distribution or climate. Within the 2012-2014 population two admixed subpopulations, A and B, were differentiated by habitat, with B significantly overrepresented in highway, and both in near-equal proportions in riverine. Both subpopulations had a signature of expansion and there was moderate genetic differentiation between them. Habitat and forest cover level had significant effects on HBR, such that Plasmodium transmission risk, as measured by EIR, in peridomestic riverine settlements was threefold higher than in peridomestic highway settlements. HBR was directly associated with available host biomass rather than forest cover. A population replacement event occurred between 2006 and 2012-2014, concurrently with LLIN distribution and a moderate El Niño event, and prior to an increase in malaria incidence. The likely drivers of this replacement cannot be determined with current data. The present-day An. darlingi population is composed of two highly admixed subpopulations, which appear to be in an early stage of differentiation, triggered by anthropogenic alterations to local habitat.