92 resultados para Alumina Catalysts
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Monolithic silica xerogels doped with different concentrations of Er3+, Yb3+ and Al3+ were prepared by sol-gel route. Densification was achieved by thermal treatment in air at 950degreesC for 120 h with a heating rate of 0.1degreesC/min. We studied the luminescence properties of the I-4(13/2)-->I-4(15/2) emission band of Er3+ as a function of the Al/Er/Yb concentration and we paid particular attention to the alumina effects. Raman spectroscopy and Vis-NIR absorption were used to monitor the degree of densification of the glasses and the residual OH content.
Resumo:
In this paper the performances of different cutting fluids and grinding wheel types were analysed in the grinding of SAE HVN-3 workpieces. The resulting residual stress, wheel wear and roughness were evaluated. The influence of the cutting fluid jet velocity v(j) was also analysed. As a conclusion, the lubrication ability seems to be the governing factor in the cutting fluid performance. The use of CBN wheels can significantly reduce the thermal damage in grinding, leading to compressive residual stresses. The CBN wheel and the cutting oil give an optimum combination for performing this grinding operation.
Resumo:
Basic or acid oxides, used as heterogeneous promoters of carbonylruthenium catalysts in liquid-phase hydrocarbonylation reactions on oxygenated substrates, strongly affect the activity and selectivity of the catalytic system. Concurrent or successive reactions of simple carbonylation, homologation, hydrogenation to hydrocarbons, and etherification take place to varying extents. Carbonylation and etherification are favored by acid oxides and homologation and hydrogenation by basic oxides. This behavior is related to the formation and stabilization by the oxides of H+ and H- hydridocarbonylruthenium catalytic species, whose relative concentrations in solution depend on the nature of the oxide. Heterogeneous oxides are easily separated and recycled from the reaction mixture. Their use simplifies the catalytic system and allows one to direct the catalytic process toward the target product.
Resumo:
Morphology of three samples of alumina are investigated. Infrared spectra are analysed by use of their morphology through the theory of average dielectric constant. Crystal shape is obtained from X-ray diffraction patterns by reflection intensity ratio. In the case of electron scanning microscopy, shape factor was obtained by an average axial ratio of the particles. Comparison of results show that there is agreement among these techniques and infrared spectra can be used to determine the morphology of alumina particles from 2.7 to 10 mu m, even for heterogeneous samples. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
This work describes the synthesis of a first-generation iron porphyrin catalyst entrapped in a silica matrix by the sol-gel route, leading to spherical particles. The catalyst was synthesized by the method of Stober, through hydrolysis and condensation of the alkoxysilane TEOS in a mixture of alcohol, water and ammonia, in the presence of the iron porphyrin Fe(TPP)Cl. The relation between particle morphology and catalytic activity of the different Fe(TPP)-SiO2, obtained using different H2O/silane molar ratios and ammonia concentrations in the xerogel syntheses, was studied.The obtained catalysts were characterized by UV-vis spectroscopy, NMR Si-29. thermogravimetric analysis and transmission electron microscopy. Their ability to catalyze (Z)-cyclooctene epoxidation and cyclohexane oxidation was tested using iodosylbenzene as oxygen donor; the oxidation products were analyzed by gas chromatography and the catalysts obtained in a form of particles spherical and monodispersed showed to be a promising catalytic system for selective oxidation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Multi-walled carbon nanotubes (MWNT) were produced by chemical vapor deposition using yttria-stabilized zirconia/nickel (YSZ/Ni) catalysts. The catalysts were obtained by a liquid mixture technique that resulted in fine dispersed nanoparticles of NiO supported in the YSZ matrix. High quality MWNT having smooth walls, few defects, and low amounts of by-products such as amorphous carbon were obtained, even from catalysts with large Ni concentrations (> 50 wt.%). By adjusting the experimental parameters, such as flux of the carbon precursor (ethylene) and Ni concentration, both the MWNT morphology and the process yield could be controlled. The resulting YSZ/Ni/MWNT composites can be interesting due to their mixed ionic-electronic transport properties, which could be useful in electrochemical applications.
Resumo:
Traditional hydrotreating catalysts are constituted by molybdenum deposited on Al2O3 promoted by nickel and phosphorous. Several studies have shown that TiO2-Al2O3 mixed oxides are excellent supports for the active phases. Results concerning the preparation, characterization and testing of molybdenum catalyst supported on titania-alumina are presented. The support was prepared by sol-gel route using titanium and aluminum isopropoxides, the titanium one chelated with acetylacetone (acac) to promote similar hydrolysis ratio for both the alcoxides. The effect of nominal molar ratio [Ti]/[Ti+Al] on the microstructural features of nanometric particles was analyzed by X-Ray Diffraction, N-2 Adsorption Isotherms and Transmission Electron Microscopy. The catalytic activity of Mo impregnated supports was evaluated using the thiophene hydrodesulfurization at different temperatures and atmospheric pressure. The pores size distribution curve moves from the micropores to the mesopores by increasing the Ti contents, allowing the fine tuning of average size from 2.5 to 6 nm. Maximal (367 m(2).g(-1)) and minimal (127 m(2).g(-1)) surface area were found for support containing [Ti]/[Ti+Al] ratio equal to 0.1 and 1, respectively. The good mesopore texture of alumina-titania support with [Ti]/[Ti+Al] molar ratio between 0.3 and 0.5 was found particularly valuable for the preparation of well dispersed MoS2 active phase, leading to HDS catalyst with somewhat higher activity than that prepared using a commercial alumina support.
Resumo:
This study compared the microtensile bond strength of a repair resin to an alumina-reinforced feldspathic ceramic (Vitadur-alpha, Vita) after 3 surface conditioning methods: Group 1, etching with 9.6% hydrofluoric acid for 1 minute plus rinsing and drying, followed by application of silane for 5 minutes; group 2, airborne particle abrasion with 110-mm aluminum oxide using a chairside air-abrasion device followed by silane application for 5 minutes; group 3, chairside tribochemical silica coating with 30-mu m SiOx followed by silane application for 5 minutes (N = 30). Group 1 presented the highest mean bond strength (19.7 +/- 3.8 MPa), which was significantly higher than those of groups 2 (10 +/- 2.6 MPa) and 3 (10.4 +/- 4 MPa) (P <.01). Scanning electron microscope analysis of the failure modes demonstrated predominantly mixed types of failures, with adhesive and/or cohesive failures in all experimental groups.
Resumo:
The effect of substitution of [Pd(PPh3)(4)], which is unstable in air, by complexes of the type [MCl2L2] (M = Pd, Pt; L = AsPh3, SbPh3), [PdL4](L = PPh3, AsPh3, SbPh3) and [NiX2(PPh3)(2)] on the syntheses of thioethers, acetylenes and ketones is described.
Resumo:
Statement of problem. Ceramic surface treatment is crucial for bonding to resin. High crystalline ceramics are poorly conditioned using traditional procedures.Purpose. The purpose of this study was to evaluate the effect of silica coating on a densely sintered alumina ceramic relative to its bond strength to composite, using a resin luting agent.Material and methods. Blocks (6 X 6 X 5 mm) of ceramic and composite were made. The ceramic (Procera AllCeram) surfaces were polished, and the blocks were divided into 3 groups (n = 5): SB, airborne-particle abrasion with 110-mu m Al(2)O(3); RS, silica coating using Rocatec System; and CS, silica coating using CoJet System. The treated ceramic blocks were luted to the composite (W3D Master) blocks using a resin luting agent (Panavia F). Specimens were stored in distilled water at 37 degrees C for 7 days and then Cut in 2 axes, x and y, to obtain specimens with a bonding area of approximately 0.6 mm(2) (n = 30). The specimens were loaded to failure in tension in a universal testing machine, and data were statistically analyzed using a randomized complete block design analysis of variance and Tukey's test (alpha=.05). Fractured surfaces were examined using light microscopy and scanning electron microscopy to determine the type of failure. Energy-dispersive spectroscopy was used for surface compositional analysis.Results. Mean bond strength values (MPa) of Groups RS (17.1 +/- 3.9) (P = .00015) and CS (18.5 +/- 4.7) (P=.00012) were significantly higher than the values of Group SB (12.7 +/- 2.6). There was no statistical difference between Groups RS and CS. All failures occurred at the adhesive zone.Conclusion. Tribochemical silica coating systems increased the tensile bond strength values between Panavia F and Procera AllCeram ceramic.