42 resultados para Aldehyde oxidoreductase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of plants compounds for the control of insects has increased worldwide. This occurs because the vegetal insecticides contains biodegradable compounds, nontoxic products and potentially suitable for use in pest control. Plants of the family Annonaceae are standing out as biopesticides because they are bioactive naturally in addition to presenting cytotoxic activity, antitumor, vermifuge, antimicrobial, immunosuppressive, anti-emetic, inhibiting appetite, antimalarial and also insecticide. The insecticidal activity of Annonaceae is due to the presence of acetogenins, substances that act on mitochondria inhibiting the NADH -ubiquinone oxidoreductase, causing the death of insects. In this review we report the use of Annonaceae in insect control, showing that so far, only 42 species of Annonaceae have information insecticidal activity against just over 60 species of insect pests. This information shows that much research is still needed, especially to get to know the insecticidal activity of other Annonaceae species, in addition to its effects on insect pests not yet studied. So we will have as an alternative to sustainable development, new vegetal insecticides such as those obtained from different Annonaceae species, which can act as an additional tool to balance the excesses of agriculture chemical or conventional.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background levels of exocyclic DNA adducts have been detected in rodent and human tissues. Several studies have focused on bifunctional electrophiles generated from lipid peroxidation as one of the endogenous sources of these lesions. We have previously shown that the reaction of 2'-deoxyguanosine (dGuo) with trans,trans-2,4-decadienal (DDE), a highly cytotoxic aldehyde generated as a product of lipid peroxidation in cell membranes, results in the formation of a number of different base derivatives. Three of these derivatives have been fully characterized as 1,N-2-etheno-2'-deoxyguanosine adducts. In the present work, four additional adducts, designated A3-A6, were isolated from in vitro reactions by reversed-phase HPLC and fully characterized on the basis of spectroscopic measurements. Adducts A3-A6 are four diastereoisomeric 1,N-2-hydroxyethano-2'-deoxyguanosine derivatives possessing a carbon side chain with a double bond and a hydroxyl group. The systematic name of these adducts is 6-hydroxy3-(2'-deoxy-beta-D-erythro-pentafuranosyl)-7-((E)-1-hydroxy-oct-2-enyl)-3,5,6,7-tetrahydro-imidazo- [1,2-a]purin-9-one. The proposed reaction mechanism yielding adducts A3-A6 involves DDE epoxidation at C2, followed by nucleophilic addition of the exocyclic amino group of dGuo to the C1 of the aldehyde and cyclization, via nucleophilic attack, on the C2 epoxy group by N-1. The formation of adducts A1-A6 has been investigated in acidic, neutral, and basic pH in the presence of H2O2 or tent-butyl hydroperoxide. Neutral conditions, in the presence of H2O2, have favored the formation of adducts A1 and A2, with minor amounts of A3-A6, which were prevalent under basic conditions. These data indicate that DDE can modify DNA bases through different oxidative pathways involving its two double bonds. It is important to structurally characterize DNA base derivatives induced by alpha,beta-unsaturated aldehydes so that the genotoxic risks associated with the lipid peroxidation process can be assessed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

trans,trans-2,4-Decadienal (DDE) is an important breakdown product of lipid peroxidation. This aldehyde is cytotoxic to mammalian cells and is known to be implicated in DNA damage. Therefore, attempts were made in this work to assess the reactivity of DDE with 2'-deoxyadenosine (dAdo). It was shown that DDE is able to bind to 2'-deoxyadenosine, yielding highly fluorescent products. Besides 1,N-6-etheno-2'-deoxyadenosine (epsilon dAdo), two other related adducts, 1-[3-(2-deoxy-beta-D-erythro-pentofuranosyl)3H-imidazo[2,1-i]purin-7-yl]-1,2,3-octanetriol and 1-[3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3H-imidazo[2,1-i]purin-7-yl]-1,2-heptanediol, were isolated by reverse phase high-performance liquid chromatography and characterized on the basis of their UV, fluorescence, nuclear magnetic resonance, and mass spectrometry features. The reaction mechanism for the formation of the DDE-2'-deoxyadenosine adducts involves 2,4-decadienal epoxidation and subsequent addition to the N-2 amino group of 2'-deoxyadenosine, followed by cyclization at the N-1 site. Adducts differ by the length of carbon side chain and the number of hydroxyl groups. The present data indicate that DDE can be epoxidized by peroxides, and the resulting products are able to form several adducts with 2'-deoxyadenosine and/or DNA. Endogenous DNA adduct formation can contribute to the already reported high cytotoxicity of DDE to mammalian cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CHEMICAL CONSTITUENTS OF Hyptidendron canum (Pohl ex Benth.) R. Harley (LAMIACEAE). Chemical investigation of Hyptidendron canum stems resulted in the isolation of betulinic, ursolic and euscaphic acids. From the leaves were isolated 3β-O- β-galactopiranosilsitosterol, ursolic aldehyde, and mixtures of maslinic acid and 2α-hydroxyursolic acid, α and β-amyrin, uvaol and erythrodiol, sitosterol and stigmasterol, spathulenol and globulol. Hexane and chloroform leave fractions as well as ursolic and betulinic acids showed antifungal activities against the yeast form of Paracoccidioides brasiliensis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: In Brazil part of the production of ginger is of inadequate quality for export. The production of spirit from felt-over rhizomes is an alternative of great interest to producers of these rhizomes. Aim: Aiming to increase the value of felt-over rhizomes, this work aimed to study the use of ginger as a raw material for alcoholic beverage production. It was evaluated the effect of fermentation conditions on the components of fermented alcoholic, as well as, the quality of alcoholic distilled beverage of ginger. Methods: Dehydrated ginger passed by enzymatic hydrolysis-saccharification processes. The hydrolysate obtained was analyzed for sugar profile in HPLC. The alcoholic fermentation process followed the central composite rotational design for three factors: fermentation temperature (23 to 37ºC), time of fermentation (17 to 33 h) and concentration of inoculum (0.22 to 3.00%). The fermented alcoholic obtained was analyzed in HPLC for the contents of ethanol, methanol, glycerol and residual sugars. The distillated alcoholic beverage of ginger was analyzed for ethanol, methanol, acetaldehyde, ethyl acetate and higher alcohols in the gas chromatography (GC). In addition, copper content and acidity were analyzed Results: Sugar profile of the ginger hydrolysate revealed the presence of 77.8% of glucose. Data analysis of fermentation process showed influence of temperature on ethanol and methanol content of the fermented alcoholic of ginger. Time of fermentation had effect on glycerol content. All parameters of process had influence on residual sugars contents. The HPLC analysis has shown presence of methanol, ethyl acetate, aldehyde, acids, higher alcohols and esters in distilled alcoholic beverage of ginger. Conclusion: Fermented alcoholic of ginger with higher levels of ethanol can be obtained under the conditions of 1.5% w/w of inoculum, 30°C of temperature and 24 hours of fermentation time. In this condition of fermentation process the beverage of ginger had good quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)