42 resultados para Agricultural Engineering


Relevância:

60.00% 60.00%

Publicador:

Resumo:

O experimento foi realizado na área experimental do Departamento de Engenharia Rural da Faculdade de Ciências Agronômicas – Unesp/Botucatu, Estado de São Paulo, em duas estufas dispostas em diferentes orientações geográficas, Leste/Oeste e Norte/Sul. A alface (Lactuva sativa L.) cv. Elisa foi cultivada em ambas estufas, sendo semeada em 05/05/99, transplantada em 29/05/99 e colhida em 31/06/99. Utilizou-se tensiômetros para monitorar o potencial de água no solo para realizar o manejo do sistema de irrigação por gotejamento. Microevaporímetros eqüidistantes de 3 m e colocados em 3 alturas, 0.50, 1.00 e 1.50 m, termohigrógrafos e tanques Classe “A” foram instalados nas duas estufas. Através de análise geoestatística, não se observou dependência espacial nem variabilidade espacial da evaporação nas duas estufas. Entretanto, a altura dos evaporímetros apresentou diferenças significativas: a evaporação à altura de 1.50 foi menor que nas outras duas.As médias de temperatura, umidade relativa e déficit de pressão de vapor do arnão diferiram estatisticamente entre as estufas e o ambiente externo. Os valores médios de evaporação de água no tanque Classe A instalado fora das estufas diferiram estatisticamente quando comparados com os instalados no interior das estufas, porém, entre as orientações não se constatou diferença significativa. Pôde-se verificar que não houve diferença significativa das características agronômicas da alface em ambas orientações estudadas. No entanto, houve diferença significativa para essas características entre os canteiros no interior das mesmas, havendo variância espacial para os dados de matéria fresca apenas na estufa N/S.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The excess of salts in the soil can directly affect the development and yield of the plants, therefore, studies on water relationships of crops in such conditions are necessary to prevent or solve the problem. The study was conducted in a greenhouse at Universidade Estadual Paulista, Department of Agricultural Engineering, Botucatu, Brazil. The statistical design used was randomized blocks with four replications, consisting of five levels of soil salinity (1.0, 3.0, 6.0, 9.0, 12.0 dS m-1), two cultivars of sugar beet (Early Wonder and Itapuã) and two types of management of fertigation, totaling in all 80 plots. Measurements of water content of the leaves, diffuse resistance to water vapor, transpiration, leaf area and the water consumption of crop were determined. There was a decrease according to increasing salinity for the analysed physiological parameters in the Early Wonder variety while for the Itapuã variety a gradual increase was observed up to a salinity of 6 dS m-1. The water consumption by plants showed a reduction with increase of soil salinity for the two varieties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Ciência do Solo) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Ciência do Solo) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the increase in world population and scarcity of natural resources, efficient use of fertilizers becomes necessary for intensive agriculture. The experiment was conducted in a greenhouse at the Department of Agricultural Engineering, UNESP in Botucatu-SP. The treatments were derived from the combination of the soil salinity (E.C: 1.0, 3.0, 6.0, 9.0 and 12.0 dS m-1), Fertigation management (M1 =traditional and M2 = with control of the ionic concentration of the soil solution) and beet cultivars (C1= Early Wonder and C2 = Itapuã) in a 5x2x2 factorial design with four replications in a randomized block design. Throughout the cultivation, the following variables were evaluated: height, stem diameter, length and diameter of plant roots. The height of the plant presented differently according to the Fertigation management and sensitive to levels of electrical conductivity in the soil. The diameter of the roots showed reductions of 3.55 and 2.48 mm for C1 and C2, respectively, every unit increase in electrical conductivity (EC) to M1. Based on the functional relationship of the best adjustment between the diameter of the roots and electrical conductivity in M2 gave an estimated maximum diameter of 90.78 mm to 94.67 mm for C1 and C2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of low quality water for agriculture should be performed with care to avoiding excessive accumulation of salts in the soil so not to harm crop development. In order to evaluate the performance of beets under the infl uence of low water quality, an experiment was conducted in a greenhouse of the Department of Agricultural Engineering, Universidade Estadual Paulista in Botucatu, Brazil, from April to July 2012. We used the beet (Beta vulgaris L.) in a completely randomized design with 6 treatments and 5 replications, totaling 30 plots. Treatments consisted of NaCl solutions at different concentrations (2.0, 3.0, 4.0, 5.0 and 6.0 dS m-1) plus a control treatment corresponding to water with no additional salt and electrical conductivity of roughly 0.26 dS m-1. Variables evaluated were total production, commercial production, plant height, number of plants and root diameter. Production of the beet crop was affected by the increasing salinity of irrigation water, characterized by reduced root production of the beets. Total and commercial production showed reductions of 8.82 and 12.2% in accordance with the unit increase of salinity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A current trend in the agricultural area is the development of mobile robots and autonomous vehicles for precision agriculture (PA). One of the major challenges in the design of these robots is the development of the electronic architecture for the control of the devices. In a joint project among research institutions and a private company in Brazil a multifunctional robotic platform for information acquisition in PA is being designed. This platform has as main characteristics four-wheel propulsion and independent steering, adjustable width, span of 1,80m in height, diesel engine, hydraulic system, and a CAN-based networked control system (NCS). This paper presents a NCS solution for the platform guidance by the four-wheel hydraulic steering distributed control. The control strategy, centered on the robot manipulators control theory, is based on the difference between the desired and actual position and considering the angular speed of the wheels. The results demonstrate that the NCS was simple and efficient, providing suitable steering performance for the platform guidance. Even though the simplicity of the NCS solution developed, it also overcame some verified control challenges in the robot guidance system design such as the hydraulic system delay, nonlinearities in the steering actuators, and inertia in the steering system due the friction of different terrains. Copyright © 2012 Eduardo Pacincia Godoy et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a computational fluid dynamics (CFD) application about the axial fan design used in an agricultural spraying system with a theoretical and experimental analysis of comparative results between the characteristic curves of a fan for several rotations and numerical results for the influence of blade attack angle variation and optimization of the spraying system, both for a same rotation. Flow was considered three-dimensional, turbulent, isothermal, viscous and non-compressible in a steady state, disregarding any influence of the gravity field. The average turbulent field was obtained from the application of time average where the turbulence model required for closing the set of equations was the k-E model. Resolution of all connected phenomena was achieved with the help of a fluid dynamics computer, CFX, which uses the finite volumes technique as a numerical method. In order to validate the theoretical analysis, an experiment was conducted in a circular section of a horizontal wind tunnel, using a Pitot tube for pressure readings. The main results demonstrate that the methodology used, based on CFD techniques, is able to reproduce the phenomenological behavior of an axial fan in a spraying system because results were very reliable and similar to experimentally measured ones.