70 resultados para Affine Blocking Sets
Resumo:
This paper presents an adaptation of the dual-affine interior point method for the surface flatness problem. In order to determine how flat a surface is, one should find two parallel planes so that the surface is between them and they are as close together as possible. This problem is equivalent to the problem of solving inconsistent linear systems in terms of Tchebyshev's norm. An algorithm is proposed and results are presented and compared with others published in the literature. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Gaussian basis sets (24s14p, 30s19p14d, and 33s21p14d for O (P-3), Ti (S-5), and Ba (S-1) atoms, respectively), are designed with the strategy of the Generator Coordinate Hartree-Fock method. The basis sets are then contracted to [6s4p], [10s5p4d], and [16s9p5d] to O, Ti, and Ba atoms, respectively, and used in calculations of total and orbital energies of (TiO+2)-Ti-1 and (BaO)-Ba-1 fragments for quality evaluation in molecular studies. For O atom, the [6s4p] basis set is enriched with d polarization function and used along with the [10s5p4d] and [16s9p5d] basis sets for the theoretical study of the piezoelectric effect of perovskite (BaTiO3). The results of this work evidence that the piezoelectric properties in BaTiO3 can be caused by electrostatic interactions. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The generator coordinate Hartree-Fock method was used to develop 20s17p, 30s20p14d, and 30s21p16d Gaussian basis sets for the O ((3)p), Mn (S-6), and Y (D-2) atoms, respectively. The Gaussian basis sets were contracted to 20s17p/9s7p, 30s20p14d/11s7p7d, and 30s21p16d/14s7p7d and utilized in calculations of total energy and orbital energies of the (MnO1+)-Mn-5 and (YO1+)-Y-3 fragments to evaluate its quality in molecular studies. Finally, the contracted basis set for O atom was supplemented with one polarization function of d symmetry and used along with the other contracted basis sets (for Mn and Y) to calculate dipole moments, total energy, and total atomic charges in YMnO3 in space group D-6h. The analysis of those properties showed that is reasonable to believe that YMnO3 present behavior of piezoelectric material. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A liquid phase blocking ELISA (LPB-ELISA) was adapted for the detection and quantification of antibodies to Newcastle disease virus. Sera from vaccinated and unvaccinated commercial flocks of ostriches (Struthio camelus) and rheas (Rhea americana) were tested. The purified and nonpurified virus used as the antigen and the capture and detector antibodies were prepared and standardized for this purpose. The hemagglutination-inhibition (HI) test was regarded as the reference method, the cutoff point for the LPB-ELISA was determined by a two-graph receiver operating characteristic analysis. The LPB-ELISA titers regressed significantly (P < 0.0001) on the HI titers with a high correlation coefficient (r = 0.875). The two tests showed good agreement (
Resumo:
The Generator Coordinate Hartree-Fock (GCHF) method is employed to generate uncontracted 15s and 18s11p gaussian basis sets for the H, C and O atoms, respectively. These basis sets are then contracted to 3s and 4s H atom and 6s5p, for C and O atoms by a standard procedure. For quality evaluation of contracted basis sets in molecular calculations, we have accomplished calculations of total and orbital energies in the Hartree-Fock-Roothaaii (HFR) approach for CH, C(2) and CO molecules. The results obtained with the uncontracted basis sets are compared with values obtained with the standard D95, 6-311G basis sets and with values reported in the literature. The 4s and 6s5p basis sets are enriched with polarization and diffuse functions for atoms of the parent neutral systems and of the enolates anions (cycloheptanone enolate, 2,5-dimethyleyelopentanone enolate, 4-heptanone enolate, and di-isopropyl ketone enolate) from the literature, in order to assess their performance in ab initio molecular calculations, and applied for calculations of electron affinities of the enolates. The calculations were performed at the DFT (BLYP and B3LYP) and HF levels and compared with the corresponding experimental values and with those obtained by using other 6-3 1 + +G((*)) and 6-311 + +G((*)) basis sets from literature. For the enolates studied, the differences between the electron affinities obtained with GCHF basis sets, at the B3LYP level, and the experimental values are -0.001, -0,014, -0.001, and -0.001 eV. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The purpose of this study was to describe, interpret and compare the EMG activation patterns of ankle muscles - tibialis anterior (TA), peroneus longus (PL) and gastrocnemius lateralis (GL) - in volleyball players with and without ankle functional instability (FI) during landing after the blocking movement. Twenty-one players with FI (IG) and 19 controls (CG) were studied. The cycle of movement analyzed was the time period between 200 ms before and 200 ms after the time of impact determined by ground reaction forces. The variables were analyzed for two different phases: pre-landing (200 ms before impact) and post-landing (200 ms after impact). The RMS values and the timing of onset activity were calculated for the three studied muscles, in both periods and for both groups. The co-activation index for TA and PL, TA and GL were also calculated. Individuals with FI presented a lower RMS value pre-landing for PL (CG = 43.0 perpendicular to 22.0; IG = 26.2 perpendicular to 8.4, p < 0.05) and higher RMS value post-landing (CG = 47.5 perpendicular to 13.3; IG = 55.8 perpendicular to 21.6, p < 0.10). Besides that, in control group PL and GL activated first and simultaneously, and TA presented a later activation, while in subjects with FI all the three muscles activated simultaneously. There were no significant differences between groups for co-activation index. Thus, the rate of contraction between agonist and antagonist muscles is similar for subjects with and without FI but the activation individually was different. Volleyball players with functional instability of the ankle showed altered patterns of the muscles that play an important role in the stabilization of the foot-ankle complex during the performance of the blocking movement, to the detriment of the ligament complex, and this fact could explain the usual complaints in these subjects. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
As recently shown the conformal affine Toda models can be obtained via hamiltonian reduction from a two-loop Kac-Moody algebra. In this paper we propose a systematic procedure to analyze the higher spin symmetries of the conformal affine Toda models. The method is based on an explicit construction of infinite towers of extended conformal symmetry generators. Two fundamental building blocks of this construction are special spin-one and -two primary fields characterizing the conformal structure of these models. The connection to the algebra of area preserving diffeomorphisms on a two-manifold (w∞ algebra) is established.
Resumo:
It is shown that the affine Toda models (AT) constitute a gauge fixed version of the conformal affine Toda model (CAT). This result enables one to map every solution of the AT models into an infinite number of solutions of the corresponding CAT models, each one associated to a point of the orbit of the conformal group. The Hirota τ-functions are introduced and soliton solutions for the AT and CAT models associated to SL̂ (r+1) and SP̂ (r) are constructed.
Resumo:
We consider the Hamiltonian reduction of the two-loop Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra script Ĝ. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of script Ĝ, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.
Resumo:
An affine sl(n + 1) algebraic construction of the basic constrained KP hierarchy is presented. This hierarchy is analyzed using two approaches, namely linear matrix eigenvalue problem on hermitian symmetric space and constrained KP Lax formulation and it is shown that these approaches are equivalent. The model is recognized to be the generalized non-linear Schrödinger (GNLS) hierarchy and it is used as a building block for a new class of constrained KP hierarchies. These constrained KP hierarchies are connected via similarity-Bäcklund transformations and interpolate between GNLS and multi-boson KP-Toda hierarchies. Our construction uncovers the origin of the Toda lattice structure behind the latter hierarchy. © 1995 American Institute of Physics.
Resumo:
We investigate higher grading integrable generalizations of the affine Toda systems, where the flat connections defining the models take values in eigensubspaces of an integral gradation of an affine Kac-Moody algebra, with grades varying from l to -l (l > 1). The corresponding target space possesses nontrivial vacua and soliton configurations, which can be interpreted as particles of the theory, on the same footing as those associated to fundamental fields. The models can also be formulated by a hamiltonian reduction procedure from the so-called two-loop WZNW models. We construct the general solution and show the classes corresponding to the solitons. Some of the particles and solitons become massive when the conformal symmetry is spontaneously broken by a mechanism with an intriguing topological character and leading to a very simple mass formula. The massive fields associated to nonzero grade generators obey field equations of the Dirac type and may be regarded as matter fields. A special class of models is remarkable. These theories possess a U(1 ) Noether current, which, after a special gauge fixing of the conformal symmetry, is proportional to a topological current. This leads to the confinement of the matter field inside the solitons, which can be regarded as a one-dimensional bag model for QCD. These models are also relevant to the study of electron self-localization in (quasi-)one-dimensional electron-phonon systems.
Resumo:
The task of controlling urban traffic requires flexibility, adaptability and handling uncertain information spread through the intersection network. The use of fuzzy sets concepts convey these characteristics to improve system performance. This paper reviews a distributed traffic control system built upon a fuzzy distributed architecture previously developed by the authors. The emphasis of the paper is on the application of the system to control part of Campinas downtown area. Simulation experiments considering several traffic scenarios were performed to verify the capabilities of the system in controlling a set of coupled intersections. The performance of the proposed system is compared with conventional traffic control strategies under the same scenarios. The results obtained show that the distributed traffic control system outperforms conventional systems as far as average queues, average delay and maximum delay measures are concerned.