44 resultados para Acyclic molecules
Resumo:
Introduction: HLA-G and HLA-E are two nonclassical class I molecules, which have been well recognized as modulators of innate and adaptive immune responses, and the expression of these molecules in virus infected cells has been associated with subversion of the immune response. Objective: In this study we performed a cross-sectional study, systematically comparing the expression of HLA-G and HLA-E in benign, premalignant and malignant laryngeal lesions, correlating with demographic and clinical variables and with the presence of high-risk and low-risk HPV types. Materials and methods: Laryngeal lesions were collected from 109 patients and stratified into 27 laryngeal papillomas, 17 dysplasias, 10 in situ laryngeal carcinomas, 27 laryngeal carcinomas without metastases, 28 laryngeal carcinomas with metastasis along with their respective draining cervical lymph nodes, and 10 normal larynx specimens. The expression of HLA-G and HLA-E molecules was determined by immunohistochemistry. HPV DNA detection and typing was performed using generic and specific primers. Results: HLA nonclassical molecules showed a distinct distribution pattern, according to the larynx lesion grade. HLA-G expression increased in benign and premalignant lesions, and gradually decreased in invasive carcinomas and in respective draining cervical lymph nodes. Conversely, HLA-E expression increased as far as lesion grade increased, including increased molecule expression in the draining lymph nodes of malignant lesions. Only 17 (15.6%) patients were HPV DNA positive. Conclusions: Overexpression of HLA-E and underexpression of HLAG appear to be good markers for malignant larynx lesion.
Resumo:
The transcription process is crucial to life and the enzyme RNA polymerase (RNAP) is the major component of the transcription machinery. The development of single-molecule techniques, such as magnetic and optical tweezers, atomic-force microscopy and single-molecule fluorescence, increased our understanding of the transcription process and complements traditional biochemical studies. Based on these studies, theoretical models have been proposed to explain and predict the kinetics of the RNAP during the polymerization, highlighting the results achieved by models based on the thermodynamic stability of the transcription elongation complex. However, experiments showed that if more than one RNAP initiates from the same promoter, the transcription behavior slightly changes and new phenomenona are observed. We proposed and implemented a theoretical model that considers collisions between RNAPs and predicts their cooperative behavior during multi-round transcription generalizing the Bai et al. stochastic sequence-dependent model. In our approach, collisions between elongating enzymes modify their transcription rate values. We performed the simulations in Mathematica® and compared the results of the single and the multiple-molecule transcription with experimental results and other theoretical models. Our multi-round approach can recover several expected behaviors, showing that the transcription process for the studied sequences can be accelerated up to 48% when collisions are allowed: the dwell times on pause sites are reduced as well as the distance that the RNAPs backtracked from backtracking sites. © 2013 Costa et al.
Resumo:
E-cadherin and beta-catenin are component of adherens junctions in epithelial cells. Loss of these proteins have been associated with progression of prostatic diseases. We performed immunohistochemistry for E-cadherin, beta-catenin and Ki-67 on canine prostatic lesions. We analyzed the expression of these antibodies in benign prostatic hyperplasia (BPH, n = 22), in pre neoplastic lesions Prostatic Intra-epithelial Neoplasia (PIN), n = 3 and Prostatic Inflammatory Atrophy (PIA), n = 7 and prostate carcinoma (PC, n = 10). In this study, a membranous expression of E-cadherin and beta-catenin and nuclear expression of Ki-67 antigen were demonstrated. The proliferative index was statistically different between carcinomas and BPH and carcinomas and pre-neoplastic lesions. Like in men, the reduction of E-cadherin and increase of Ki-67 expression in neoplastic lesions in dog prostate may be related to the carcinogenic process in this gland. © 2013 Asian Network for Scientific Information.
Resumo:
The self-assembly of short amino acid chains appears to be one of the most promising strategies for the fabrication of nanostructures. Their solubility in water and the possibility of chemical modification by targeting the amino or carboxyl terminus give peptide-based nanostructures several advantages over carbon nanotube nanostructures. However, because these systems are synthesized in aqueous solution, a deeper understanding is needed on the effects of water especially with respect to the electronic, structural and transport properties. In this work, the electronic properties of l-diphenylalanine nanotubes (FF-NTs) have been studied using the Self-Consistent Charge Density-Functional-based Tight-Binding method augmented with dispersion interaction. The presence of water molecules in the central hydrophilic channel and their interaction with the nanostructures are addressed. We demonstrate that the presence of water leads to significant changes in the electronic properties of these systems decreasing the band gap which can lead to an increase in the hopping probability and the conductivity. © the Owner Societies 2013.
Resumo:
Background: Plasmodium vivax is the most prevalent malaria species in Brazil. The parasite-host coevolutionary process can be viewed as an 'arms race', in which adaptive genetic changes in one are eventually matched by alterations in the other. Methods: Following the candidate gene approach we analyzed the CD40, CD40L and BLYS genes that participate in B-cell co-stimulation, for associations with P. vivax malaria. The study sample included 97 patients and 103 controls. We extracted DNA using the extraction and purification commercial kit and identified the following SNPs: 21C.T in the CD40 gene, 2726T.C in the CD40L gene and the 2871C.T in the BLyS gene using PCR-RFLP. We analyzed the genotype and allele frequencies by direct counting. We also compared the observed with the expected genotype frequencies using the Hardy-Weinberg equilibrium. Results: The allele and genotype frequencies for these SNPs did not differ statistically between patient and control groups. Gene-gene interactions were not observed between the CD40 and BLYS and between the CD40L and BLYS genes. Overall, the genes were in Hardy-Weinberg equilibrium. Significant differences were not observed among the frequencies of antibody responses against P. vivax sporozoite and erythrocytic antigens and the CD40 and BLYS genotypes. Conclusions: The results of this study show that, although the investigated CD40, CD40L and BLYS alleles differ functionally, this variation does not alter the functionality of the molecules in a way that would interfere in susceptibility to the disease. The variants of these genes may influence the clinical course rather than simply increase or decrease susceptibility. © Royal Society of Tropical Medicine and Hygiene 2013. All rights reserved.
Resumo:
Accumulating evidence demonstrates that chronic inflammation plays an important role in heart hypertrophy and cardiac diseases. However, the fine-tuning of cellular and molecular mechanisms that connect inflammatory process and cardiac diseases is still under investigation. Many reports have demonstrated that the overexpression of the cyclooxygenase-2 (COX-2), a key enzyme in the conversion of arachidonic acid to prostaglandins and other prostanoids, is correlated with inflammatory processes. Increased level of prostaglandin E2 was also found in animal model of left ventricle of hypertrophy. Based on previous observations that demonstrated a regulatory loop between COX-2 and the RNA-binding protein CUGBP2, we studied cellular and molecular mechanisms of a pro-inflammatory stimulus in a cardiac cell to verify if the above two molecules could be correlated with the inflammatory process in the heart. A cellular model of investigation was established and H9c2 was used.We also demonstrated a regulatory connection between COX-2 and CUGBP2 in the cardiac cells. Based on a set of different assays including gene silencing and fluorescence microscopy, we describe a novel function for the RNA-binding protein CUGBP2 in controlling the pro-inflammatory stimulus: subcellular trafficking of messenger molecules to specific cytoplasmic stress granules to maintain homeostasis. © 2013 International Federation for Cell Biology.
Resumo:
The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules. © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The reverse Monte Carlo (RMC) method generates sets of points in space which yield radial distribution functions (RDFS) that approximate those of the system of interest. Such sets of configurations should, in principle, be sufficient to determine the structural properties of the system. In this work we apply the RMC technique to fluids of hard diatomic molecules. The experimental RDFs of the hard-dimer fluid were generated by the conventional MC method and used as input in the RMC simulations. Our results indicate that the RMC method is only satisfactory in determining the local structure of the fluid studied by means of only mono-variable RDF. Also we suggest that the use of multi-variable RDFs would improve the technique significantly. However, the accuracy of the method turned out to be very sensitive to the variance of the input experimental RDF. © 1995.
Resumo:
Considering that downregulation of HLA expression could represent a potential mechanism for breast carcinogenesis and metastasis, the aim of the present study was to use immunohistochemical methods to analyze the expression of HLA-Ia, HLA-DR, HLA-DQ, HLA-E, and HLA-G in invasive ductal carcinoma (IDC) of the breast and to relate this HLA profile to anatomopathological parameters. Fifty-two IDC from breast biopsies were stratified according to histological differentiation (well, moderately, and poorly differentiated) and to the presence of metastases in axillary lymph nodes. The expression of HLA molecules was assessed by immunohistochemistry, using a computer-assisted system. Overall, 31 (59.6%) out of the 52 IDC breast biopsies exhibited high expression of HLA-G, but only 14 (26.9%) showed high expression of HLA-E. A large number (41, 78.8%) of the biopsies showed low expression of HLA-Ia, while 45 (86.5%) showed high expression of HLA-DQ and 36 (69.2%) underexpressed HLA-DR. Moreover, 24 (41.2%) of 52 biopsies had both low HLA-Ia expression and high HLA-G expression, while 11 (21.2%) had low HLA-Ia expression and high HLA-E expression. These results suggest that, by different mechanisms, the downregulation of HLA-Ia, HLA-E, and HLA-DR and the upregulation of HLA-G and HLA-DQ are associated with immune response evasion and breast cancer aggressiveness.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Colorectal cancer (CRC) is a disease whose genesis may include metabolic dysregulation. Cancer stem cells are attractive targets for therapeutic interventions since their aberrant expansion may underlie tumor initiation, progression, and recurrence. To investigate the actions of metabolic regulators on cancer stem cell-like cells (CSC) in CRC, we determined the effects of soybean-derived bioactive molecules and the anti-diabetes drug metformin (MET), alone and together, on the growth, survival, and frequency of CSC in human HCT116 cells. Effects of MET (60 μM) and soybean components genistein (Gen, 2 μM), lunasin (Lun, 2 μM), β-conglycinin (β-con, 3 μM), and glycinin (Gly, 3 μM) on HCT116 cell proliferation, apoptosis, and mRNA/protein expression and on the frequency of the CSC CD133(+)CD44(+) subpopulation by colonosphere assay and fluorescence-activated cell sorting/flow cytometry were evaluated. MET, Gen, and Lun, individually and together, inhibited HCT116 viability and colonosphere formation and, conversely, enhanced HCT116 apoptosis. Reductions in frequency of the CSC CD133(+)CD44(+) subpopulation with MET, Gen, and Lun were found to be associated with increased PTEN and reduced FASN expression. In cells under a hyperinsulinemic state mimicking metabolic dysregulation and without and with added PTEN-specific inhibitor SF1670, colonosphere formation and frequency of the CD133(+)CD44(+) subpopulation were decreased by MET, Lun and Gen, alone and when combined. Moreover, MET + Lun + Gen co-treatment increased the pro-apoptotic and CD133(+)CD44(+)-inhibitory efficacy of 5-fluorouracil under hyperinsulinemic conditions. Results identify molecular networks shared by MET and bioavailable soy food components, which potentially may be harnessed to increase drug efficacy in diabetic and non-diabetic patients with CRC.