76 resultados para ALKALINE INTRUSIONS
Resumo:
The Valle Chico Massif is a member of the Early Cretaceous alkaline magmatic suite of rocks distributed around the Parana Basin. Three magmatic associations are recognized: (1) the Plutonic Association, characterized by syenites, quartz syenites, and syenogranites; (2) the Volcanic Association, mainly composed of porphyritic quartz trachytes; and (3) the Porphyritic Dike Association consisting of rhyolites and trachytes. Judging by their geochemical behavior, the rhyolites exhibit a weak peralkaline affinity, and are genetically connected by progressive melting processes, whereas the other lithologies have a metaluminous nature, and are products of mineral fractionation. An enriched mantle of Transamazonian age, geochemically similar to OIB, is postulated as a possible source.
Resumo:
Polidocanol-solubilized osseous plate alkaline phosphatase was modulated by cobalt ions in a similar way as by magnesium ions. For concentrations up to 1 mu M, the Chelex-treated enzyme was stimulated by cobalt ions, showing K-d = 6.0 mu M, V = 977.5 U/mg, and site-site interactions (n = 2.5). Cobalt-enzyme was highly unstable at 37 degrees C, following a biphasic inactivation process with inactivation constants of about 0.0625 and 0.0015 min(-1). Cobalt ions stimulated the enzyme synergistically in the presence of magnesium ions (K-d = 5.0 mu M; V = 883.0 U/mg) or in the presence of zinc ions (K-d = 75.0 mu M; V = 1102 U/mg). A steady-state kinetic model for the modulation of enzyme activity by cobalt ions is proposed.
Resumo:
Kinetic evidence for the role of divalent metal ions in the phosphotransferase activity of polidocanol-solubilized alkaline phosphatase from osseous plate is reported. Ethylenediamine tetreacetate, 1,10-phenanthrolin, and Chelex-100 were used to prepare metal-depleted alkaline phosphatase. Except for Chelex-100, either irreversible inactivation of the enzyme or incomplete removal of metal ions occurred. After Chelex-100 treatment, full hydrolase activity of alkaline phosphatase was recovered upon addition of metal ions. on the other hand, only 20% of transferase activity was restored with 0.1 mu M ZnCl2, in the presence of 1.0 M diethanolamine as phosphate acceptor. In the presence of 0.1 mM MgCl2, the recovery of transferase activity increased to 63%. Independently of the phosphate acceptor used, the transferase activity of the metal-depleted alkaline phosphatase was fully restored by 8 mu M ZnCl2 plus 5 mM MgCl2. In the presence of diethanolamine as phosphate acceptor, manganese, cobalt, and calcium ions did nor stimulate the transferase activity. However, manganese and cobalt-enzyme catalyzed the transfer of phosphate to glycerol and glucose. (C) 1997 Elsevier B.V.
Resumo:
Alkaline phosphatase from rat osseous plate is allosterically modulated by ATP, calcium and magnesium at pH 7.5. At pH 9.4, the hydrolysis of ATP and PNPP follows Michaelis-Menten kinetics with K0.5 values of 154 muM and 42 muM, respectively. However, at pH 7.5 both substrates exhibit more complex saturation curves, while only ATP exhibited site-site interactions. Ca2+-ATP and Mg2+-ATP were effective substrates for the enzyme, while the specific activity of the enzyme for the hydrolysis of ATP at pH 7.5 was 800-900 U/mg and was independent of the ion species. ATP, but not PNPP, was hydrolyzed slowly in the absence of metal ions with a specific activity of 140 U/mg. These data demonstrate that in vitro and at pH 7.5 rat osseous plate alkaline phosphatase is an active calcium or magnesium-activated ATPase.
Resumo:
The hydrogen evolution reaction (HER) was studied on Ni-LaNi5 and Ni-MmNi(3.4)Co(0.8)Al(0.8) electrode materials in 1 mol dm(-3) NaOH solution. The steady-state polarization curves and electrochemical impedance spectroscopy experimental data showed a pronounced improvement in HER kinetics when these electrode materials were used. The electrochemical results are in accordance with the Volmer-Heyrovsky mechanism. The kinetic results indicate a more effective improvement in the Heyrovsky step, suggesting an electrocatalytic synergistic effect of the hyper-electronic character of the Ni and the hypo-electronic character of the rare-earth element on the electrode surface. (C) 2000 International Association for Hydrogen Energy. Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
The Indanthrene Olive Green B (C.I. Vat Green 3; C.I. 69500), VG3 dye, a vat dye bearing an anthraquinonoid group and a ketonic group, can be detected by differential pulse voltammetry in alkaline solution using glassy carbon electrode. on the adsorbed form the dyes are reduced into three cathodic steps at -0.54 V, -0.65 V and -0.93 V vs Ag/AgCl. The leuco form generated after previous electrolysis at controlled potential of -1 V can be detected by voltammetry due to its reoxidation peak at -0.08 V. An analytical method is proposed for determining the vat dye using modified glassy carbon electrode by electrochemical activation in alkaline medium. Linear relationship was observed between l(Pu) vs concentration from I X 10(-5) mol L-1 to 6.0 X 10(-4) mol L-1. The detection limit was calculated to be 9.3 X 10(-6) mol L-1. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In order to obtain cellulases that improve the detergency of laundry detergent products, two alkalophilic microorganims, Bacillus sp B38-2 and Streptomyces sp S36-2, were isolated from soil and compost by incubating samples in enrichment culture medium containing CMC and Na2CO3 at pH9.6. It was found that they secrete a constitutive extracellular alkaline carboxymethyl cellulase (CMCase) in high quantity. The maximum enzyme activity was observed between 48hr to 72 hr at 30-degrees-C for the Streptomyces and between 72hr to 96hr at 35-degrees-C for the Bacillus. The optimum pH and temperature of the crude enzyme activities ranged from 6.0 to 7.0 at 55-degrees-C for the Streptomyces and 7.0 to 8.0 at 60-degrees-C for the Bacillus. Two crude CMCases activities were termostable at 45-degrees-C for 1hr and the both crude enzyme activities of the Bacillus as of the Streptomyces were stable at pH 5.0 to 9.0 after pH treatments in various buffer solutions at 30-degrees-C for 24hr.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
1. The mycelial Pi-repressible acid phosphatase presented p-nitrophenylphosphatase activity with negative cooperativity and Michaelian behavior when synthesized by the wild-type and pho-2A mutant strains of Neurospora crassa, respectively.2. The major acid phosphatase present in cell extracts of the pho-2A mutant of N. crassa grown in low Pi medium is more thermolabile (t1/2 = 4 min at 54-degrees-C, pH 5.4) than that of the wild strain (stable for at least 80 min at 54-degrees-C, pH 5.4).3. The pho-2A mutant of N. crassa secreted a more thermolabile acid phosphatase (t1/2 = 30 min at 50-degrees-C, pH 5.4) than the wild strain (t1/2 of at least 80 min at 50-degrees-C, pH 5.4).4. The pho-2A mutant of N. crassa synthesized a more thermolabile acid phosphatase (t1/2 = 37 min at 54-degrees-C, pH 5.4) than the wild strain in high Pi medium (t1/2 = 14 min al 54-degrees-C, pH 5.4).5. The pleiotropic nature of the pho-2 locus and its possible involvement in the mechanism of phosphatase secretion by N. crassa are proposed.
Resumo:
Cefaclor is not reducible at a mercury electrode, but it can be determined polarographically and by cathodic stripping voltammetry as its initial alkaline degradation product which is obtained in high yield by hydrolysis of cefaclor in Britton-Robinson (B-R) buffer pH 10 at 50 degrees C for 30 min (reduction peak at pH 10, -0.70 V). Differential pulse polarographic calibration graphs are linear up to at least 1 x 10(-4) mol l(-1). Recoveries of 93% of the cefaclor (n = 3) were obtained from urine spiked with 38.6 mu g ml(-1) using this polarographic method with 1 ml urine made up to 10 ml with pH 10 buffer. Using cathodic stripping voltammetry and accumulating at a hanging mercury drop electrode at -0.2 V for 30 s, linear calibration graphs were obtained from 0.35 to 40 mu g ml(-1) cefaclor in B-R buffer pH 10. A relative standard deviation of 4.2% (eta = 5) was obtained, and the limit of detection was calculated to be 2.9 ng ml(-1). Direct determination of cefaclor in human urine (1 ml of urine was made up to 10 ml with pH 10 buffer) spiked to 0.39 mu g ml(-1) was made (recovery 98.6%). (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The D allozyme of placental alkaline phosphatase (PLAP) displays enzymatic properties at variance with those of the common PLAP allozymes. We have deduced the amino acid sequence of the PLAP D allele by PCR cloning of its gene, ALPP Two coding substitutions were found in comparison With the cDNA of the common PLAP F allele, i.e., 692C>G and 1352A>G, which translate into a P209R and E429G substitution. A single nucleotide primer extension (SNuPE) assay was developed using PCR primers that enable the amplification of a 1.9 kb PLAP fragment. Extension primers were then used on this PCR fragment to detect the 692C>G and 1352A>G substitution. The SNuPE assay on these two nucleotide substitutions enabled us to distinguish the PLAP F and D alleles from the PLAP S/I alleles. Functional studies on the D allozyme were made possible by constructing and expressing a PLAP D cDNA, i.e., [Arg209, Gly429] PLAP, into wildtype Chinese hamster ovary cells. We determined the k(cat) and K-m, of the PLAP S, F. and D allozymes using the non,physiological substrate p-nitrophenylphosphate at an optimal pH (9.8) as well as two physiological substrates, i.e., pyridoxal-5'-phosphate and inorganic pyrophosphate at physiological pH (7.5). We found that the biochemical properties of the D allozyme of PLAP are significantly different from those of the common PLAP allozymes. These biochemical findings suggest that a suboptimal enzymatic function by the PLAP D allozyme may be the basis for the apparent negative selective pressure of the PLAP D allele. The development of the SNuPE assay will enable us to test the hypothesis that the PLAP D allele is subjected to intrauterine selection by examining genomic DNA from statistically informative population samples. Hum Mutat 19:258-267, 2002. (C) 2002 Wiley-Liss, Inc.
Resumo:
Rat osseous plate alkaline phosphatase is a metalloenzyme with two binding sites for Zn2+ (sites I and III) and one for Mg2+ (site II). This enzyme is stimulated synergistically by Zn2+ and Mg2+ (Ciancaglini et al., 1992) and also by Mn2+ (Leone et al., 1995) and Co2+ (Ciancaglini et al., 1995). This study was aimed to investigate the modulation of enzyme activity by Ca2+. In the absence of Zn2+ and Mg2+, Ca2+ had no effects on the activity of Chelex-treated, Polidocanol-solubilized enzyme. However, in the presence of 10 mu M MgCl2, increasing concentration of Ca2+ were inhibitory, suggesting the displacement of Mg2+ from the magnesium-reconstituted enzyme. For calcium-reconstituted enzyme, Zn2+ concentrations Zip to 0.1 mu M were stimulatory, increasing specific activity from 130 U/mg to about 240 U/mg with a K-0.5 = 8.5 nM. Above 0.1 mu M Zn2+ exerted a strong inhibitory effect and concentrations of Ca2+ up to I mM were not enough to counteract this inhibition, indicating that Ca2+ was easily displaced by Zn2+. At fixed concentrations of Ca2+, increasing concentrations of Mg2+ increased the enzyme specific activity from 472 U/mg to about 547 U/mg, but K-0.5 values were significantly affected (from 4.4 mu M to 38.0 mu M). The synergistic effects observed for the activity of Ca2+ plus magnesium-reconstituted enzyme, suggested that these two ions bind to the different sites. A model to explain the effect of Ca2+ on the activity of the enzyme is presented. (C) 1997 Elsevier B.V.
Resumo:
Alkaline phosphatase activity was released up to 100% from the membrane by using 0.1 U of phosphatidylinositol-specific phospholipase C from B. thuringiensis. The Mr of solubilized enzyme was 145,000 by Sephacryl S-300 gel filtration and 66,000 by SDS-PAGE, suggesting a dimeric structure. Solubilization of the membrane-bound enzyme with phospholipase C did not destroy its ability to hydrolyze p-nitrophenyl phosphate (PNPP) (264.3 mu mol min(-1) mg(-1)), ATP (42.0 mu mol min(-1) mg(-1)) and pyrophosphate (28.4 mu mol min(-1) mg(-1)). The hydrolysis of ATP and PNPP by solubilized enzyme exhibited ''Michaelian'' kinetics with K-0.5 = 70 and 979 mu M, respectively. For pyrophosphate, K-0.5 was 128 mu M and site-site interactions were observed (n = 1.4). Magnesium ions were stimulatory (K-d = 1.5 mM) but zinc ions were powerful non-competitive inhibitors (K-d = 6.2 mu M) of solubilized enzyme. Treatment of solubilized alkaline phosphatase with Chellex 100 reduced the original PNPPase activity to 5%. Cobalt (K-0.5 = 10.1 mu M), magnesium (K-0.5 = 29.5 mu M) and manganese ions (K-0.5 = 5 mu M) restored the activity of the apoenzyme with positive cooperativity, suggesting that phosphatidylinositol-specific phospholipase C-solubilized alkaline phosphatase is a metalloenzyme. The stimulation of the apoenzyme by calcium ions (K-0.5 = 653 mu M) was lower than that observed for the other ions (26%) and exhibited site-site interactions (n = 0.7). Zinc ions had no effect on the apoenzyme of the solubilized enzyme.