95 resultados para Aço AISI 52100
Resumo:
The influence of ethanol, sulfuric acid and chloride on the corrosion resistance of 316L stainless steel was investigated by means of polarization curves and electrochemical impedance spectroscopy measurements. Over the studied range, the steel corrosion potential was independent of H2SO 4 and NaCl concentrations in aqueous solution. On the other hand, in solution containing 65 wt.% ethanol and 35 wt.% water, the corrosion potentials were higher than those obtained in aqueous solution. Besides, the steel corrosion potential was affected by the addition of H2SO4 and NaCl in solution. In solutions with and without ethanol, plus 0.35 wt.% NaCl, the presence of 1 wt.% H2SO4 inhibited the appearance of pitting corrosion. © 2013 Sociedade Brasileira de Química.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Efeitos das microestruturas bainíticas e multifásicas nas propriedades mecânicas de um aço AISI 4340
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
The 4340 are classified as ultra-high strength steels used by the aviation industry and aerospace applications such as aircraft landing gear and several structural applications, usually in quenched and tempered condition. In this situation occurs reduction of toughness, which encourages the study of multiphasic and bainitic structures, in order to maintain strength without loss of toughness. In this study, ferritic-pearlitic structure was compared to bainitic and martensitic structure, identified by the reagents Nital, LePera and Sodium Metabisulfite. Sliding wear tests of the type pin-on-disk were realized and the results related to the microstructure of these materials and also to their hardnesses. It is noted that these different microstructures had very similar behavior, concluding that all three tested pairs can be used according to the request level.
Resumo:
Since the 1950s, fatigue is the most important project and operational consideration for both civil and military aircrafts. For some aircraft models the most loaded component is one that supports the motor: the Motor Cradle. Because they are considered critical to the flight safety the aeronautic standards are extremely rigorous in manufacturing them by imposing a zero index of defects on the final weld quality (Safe Life), which is 100% inspected by Non-Destructive Testing/NDT. This study has as objective to evaluate the effects of up to four successive TIG welding repairs on the axial fatigue strength of an AISI 4130 steel. Tests were conducted on hot-rolled steel plate specimens, 0.89 mm thick, with load ratio R = 0.1, constant amplitude, at 20 Hz frequency and in room temperature, in accordance with ASTM E466 Standard. The results were related to microhardness and microstructural and geometric changes resulting from welding cycles.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The purpose of this work is the deposition of films in order to increase the corrosion resistance of AISI 304 steel, which is a material used to construct the reactors for bioethanol production. This deposition inhibits the permeation of corrosive species to the film-metal interface. Thin films were prepared by radio-frequency plasma enhanced chemical vapor deposition (RF-PECVD) method using plasmas of hexamethyldisiloxane/argon/oxygen mixtures excited by signals of different powers. The plasma was generated by the application of RF power of 13.56 MHz to the sample holder while keeping grounded the topmost electrode and the chamber walls. The effect of the RF power on the properties of the samples was investigated by perfilometry, X-ray photoelectron spectroscopy (XPS), contact angle, and electrochemical impedance spectroscopy (EIS). The results of the corrosion resistance tests of the AISI 304 steel were interpreted in terms of the energy delivered to the growing layer by plasma excitation power.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)