42 resultados para A(4) symmetry
Resumo:
We study in a model independent way the role of a techniomega resonance in the process e+e-→ W+W-Z at the Next Linear Collider. © 1998 Elsevier Science B.V.
Resumo:
Group theoretical-based techniques and fundamental results from number theory are used in order to allow for the construction of exact projectors in finite-dimensional spaces. These operators are shown to make use only of discrete variables, which play the role of discrete generator coordinates, and their application in the number symmetry restoration is carried out in a nuclear BCS wave function which explicitly violates that symmetry. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
In a model with B - L gauge symmetry, right-handed neutrinos may have exotic local B - L charge assignments: two of them with B - L = -4 and the other one having B - L = 5. Then, it is natural to accommodate the right-handed neutrinos with the same B - L charge in a doublet of the discrete S3 symmetry, and the third one in a singlet. If the Yukawa interactions involving right-handed neutrinos are invariant under S3, the quasi-Dirac neutrino scheme arises naturally in this model. However, we will show how in this scheme it is possible to give a value for θ13 in agreement with the Daya Bay results. For example the S3 symmetry has to be broken in the Yukawa interactions involving right-handed charged leptons. © 2013 IOP Publishing Ltd.
Resumo:
We revisit the dynamical system-based approach of spherically symmetric vacuum braneworlds, pointing out and studying the existence of a transcritical bifurcation as the dark pressure parameter changes its sign, we analyze some consequences of not discard the brane cosmological constant. For instance, it is noteworthy that the existence of an isothermal state equation between the dark fluid parameters cannot be obtained via the requirement of a quasi-homologous symmetry of the vacuum. © 2013 Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
We elucidate the close relationship between spontaneous time-reversal symmetry breaking and the physics of excitonic instabilities in strongly correlated multiband systems. The underlying mechanism responsible for the spontaneous breaking of time-reversal symmetry in a many-body system is closely related to the Cooper-like pairing instability of interband particle-hole pairs involving higher-order symmetries. Studies of such pairing instabilities have, however, mainly focused on the mean-field aspects of the virtual exciton condensate, which ignores the presence of the underlying collective Fermi-liquid excitations. We show that this relationship can be exploited to systematically derive the coupling of the condensate order parameter to the intraband Fermi-liquid particle-hole excitations. Surprisingly, we find that the static susceptibility is negative in the ordered phase when the coupling to the Fermi-liquid collective excitations are included, suggesting that a uniform condensate of virtual excitons, with or without time-reversal breaking, is an unstable phase at T = 0.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The increasing number of space debris in operating regions around the earth constitutes a real threat to space missions. The goal of the research is to establish appropriate scientific-technological conditions to prevent the destruction and/or impracticability of spacecraft in imminent collision in these regions. A definitive solution to this problem has not yet been reached with the degree of precision that the dynamics of spatial objects (vehicle and debris) requires mainly due to the fact that collisions occur in chains and fragmentation of these objects in the space environment. This fact threatens the space missions on time and with no prospects for a solution in the near future. We present an optimization process in finding the initial conditions (CIC) to collisions, considering the symmetry of the distributions of maximum relative positions between spatial objects with respect to the spherical angles. For this, we used the equations of the dynamics on the Clohessy-Witshire, representing a limit of validation that is highly computationally costly. We simulate different maximum relative positions values of the corresponding initial conditions given in terms of spherical angles. Our results showed that there are symmetries that significantly reduce operating costs, such that the search of the CIC is advantageously carried out up to 4 times the initial processing routine. Knowledge of CIC allows the propulsion system operating vehicle implement evasive maneuvers before impending collisions with space debris.
Resumo:
The possibility of strange stars is one of the most important issues in the study of compact objects. Here we use the observations of the newly discovered millisecond x-ray pulsar SAX J1808.4-3658 to constrain the radius of the compact star. Comparing the mass-radius relation of SAX J1808.4-3658 with theoretical models for both neutron stars and strange stars, we argue that a strange star model could be more consistent with SAX J1808.4-3658, and suggest that it is a likely strange star candidate. Our results are useful in constraining microscopic chiral symmetry restoration parameters in the quantum chromodynamics (QCD) modeling of strange matter.