197 resultados para 010501 Algebraic Structures in Mathematical Physics
Resumo:
Applying the principle of analytic extension for generalized functions we derive causal propagators for algebraic non-covariant gauges. The so-generated manifestly causal gluon propagator in the light-cone gauge is used to evaluate two one-loop Feynman integrals which appear in the computation of the three-gluon vertex correction. The result is in agreement with that obtained through the usual prescriptions.
Resumo:
The Green function for a spin-1/2 charged particle in the presence of an external plane wave electromagnetic field is calculated by algebraic techniques in terms of the free-particle Green function.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Neste trabalho, ajustou-se um modelo matemático para quantificar o efeito do rendimento do motor elétrico sobre os custos de um sistema de bombeamento para irrigação na estrutura tarifária de energia elétrica convencional e horo-sazonal verde, bem como calcular o tempo de recuperação do capital investido no equipamento de maior rendimento. em seguida, o mesmo foi aplicado a um sistema de irrigação tipo pivô central em duas opções de rendimento do motor elétrico: 92,6% (linha padrão) e 94,3% (linha alto rendimento), sendo que o custo de aquisição do primeiro correspondeu a 70% do segundo. A potência do motor elétrico era de 100 cv. Os resultados mostraram que o modelo permitiu avaliar se um motor de alto rendimento era viável economicamente em relação ao motor-padrão em cada estrutura tarifária. Nas duas estruturas tarifárias, o motor de alto rendimento não foi viável. Na tarifa horo-sazonal verde, somente seria viável se seu rendimento fosse 4,46% superior ao do motor-padrão. Na tarifa convencional, somente seria viável se o ganho de rendimento superasse 2,71%.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work we present constructions of algebraic lattices in Euclidean space with optimal center density in dimensions 2, 3, 4, 6, 8 and 12, which are rotated versions of the lattices Λn, for n = 2,3,4,6,8 and K12. These algebraic lattices are constructed through twisted canonical homomorphism via ideals of a ring of algebraic integers. Mathematical subject classification: 18B35, 94A15, 20H10.
Resumo:
Using the functional integral formalism for the statistical generating functional in the statistical (finite temperature) quantum field theory, we prove the equivalence of many-photon Greens functions in the Duffin-Kennner-Petiau and Klein-Gordon-Fock statistical quantum field theories. As an illustration, we calculate the one-loop polarization operators in both theories and demonstrate their coincidence.
Resumo:
lsoscalar (T = 0) plus isovector (T = 1) pairing Hamiltonian in LS-coupling. which is important for heavy N = Z nuclei, is solvable in terms of a SO(8) Lie algebra for three special values of the mixing parameter that measures the competition between the T = 0 aid T = 1 pairing. The SO(8) algebra is generated, amongst others, by the S = 1, T = 0 and S = 0, T = 1 pair creation and annihilation operators and corresponding to the three values of the mixing parameter, there are three chains of subalgebras: SO(8) superset of SOST (6) superset of SOS(3) circle times SOT(3), SO(8) superset of [SOS(5) superset of SOS(3)] circle times SOT(3) and SO(8) superset of [SOT(5) superset of SOT(3)] circle times SOS(3). Shell model Lie algebras, with only particle number conserving generators, that are complementary to these three chains of subalgebras are identified and they are used in the classification of states for a given number of nucleons. The classification problem is solved explicitly tor states with SO(8) seniority nu = 0, 1, 2, 3 and 4. Using them, hand structures in isospin space are identified for states with nu = 0, 1, 2 and 3. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A prescription for computing the propagator for D-dimensional higher-derivative gravity theories, based on the Barnes-Rivers operators, is presented. A systematic study of the tree-level unitarity of these theories is developed and the agreement of their linearized versions with Newton's law is investigated by computing the corresponding effective nonrelativistic potential. Three-dimensional quadratic gravity with a gravitational Chern-Simons term is also analyzed. A discussion on the issue of light bending within the framework of both D-dimensional quadratic gravity and three-dimensional quadratic gravity with a Chern-Simons term is provided as well. (C) 2002 American Institute of Physics.
Resumo:
An algebraic reformulation of the Bohr-Sommerfeld (BS) quantization rule is suggested and applied to the study of bound states in one-dimensional quantum wells. The energies obtained with the present quantization rule are compared to those obtained with the usual BS and WKB quantization rules and with the exact solution of the Schrodinger equation. We find that, in diverse cases of physical interest in molecular physics, the present quantization rule not only yields a good approximation to the exact solution of the Schrodinger equation, but yields more precise energies than those obtained with the usual BS and/or WKB quantization rules. Among the examples considered numerically are the Poeschl-Teller potential and several anharmonic oscillator potentials. which simulate molecular vibrational spectra and the problem of an isolated quantum well structure subject to an external electric field.
Resumo:
A short review of the plethysm technique aiming to its application in finding branching rules for the reduction of an irreducible representation of a group under the restriction to one of its subgroups is given. The algebraic structure of the interacting boson model and some of its extensions is given together with the branching rules needed to classify their basis states, obtained by the use of plethysms. (C) 2003 American Institute of Physics.
Resumo:
We discuss the phi(6) theory defined in D=2+1-dimensional space-time and assume that the system is in equilibrium with a thermal bath at temperature beta(-1). We use the 1/N expansion and the method of the composite operator (Cornwall, Jackiw, and Tomboulis) for summing a large set of Feynman graphs. We demonstrate explicitly the Coleman-Mermin-Wagner theorem at finite temperature.