85 resultados para óleo degomado de soja


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Proteção de Plantas) - FCA

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The soybean crop is considered a high expression around the world. In plant breeding programs, knowledge of genetic diversity is extremely important and in this context, are frequently used multivariate analyzes. Thus, the aim of the present study was to evaluate the genetic divergence between soybean crosses through multivariate techniques. In total, 16 crosses were evaluated, which were in the F2 generation of inbreeding. The evaluated characteristics were plant height at maturity, height of the first pod, number of branches per plant, number of pods per plant, number of nodes per plant, hundred seed weight, grain yield and oil content. For the analyzes was used Euclidean distance, methods of hierarchical clustering UPGMA and Ward and principal component analysis. Genetic distances estimated using Euclidean distance ranged from 1.24 to 8.13, with the smallest distance observed between crosses C1 and C4, and the greatest distance between the C2 crosses and C6. The methods UPGMA clustering and Ward met crossings in five different groups. The principal component analysis explained 86.2% of the variance contained in the original eight variables with three main components. The APM characters, NV, NR, NN, PG% and oil were the main contributors to genetic divergence among traits. Multivariate techniques were crucial to the analysis of genetic diversity, and the methods of Ward and UPGMA clustering and principal components have consistent results in this way, the simultaneous use of these tools in genetic analysis of crosses is indicated

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)