470 resultados para Dental Instruments
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objectives: This study evaluated the reliability and failure modes of implants with a microthreaded or smooth design at the crestal region, restored with screwed or cemented crowns. The postulated null hypothesis was that the presence of microthreads in the implant cervical region would not result in different reliability and strength to failure than smooth design, regardless of fixation method, when subjected to step-stress accelerated life-testing (SSALT) in water. Materials and methods: Eighty four dental implants (3.3 × 10 mm) were divided into four groups (n = 21) according to implant macrogeometric design at the crestal region and crown fixation method: Microthreads Screwed (MS); Smooth Screwed (SS); Microthreads Cemented (MC), and Smooth Cemented (SC). The abutments were torqued to the implants and standardized maxillary central incisor metallic crowns were cemented (MC, SC) or screwed (MS, SS) and subjected to SSALT in water. The probability of failure versus cycles (90% two-sided confidence intervals) was calculated and plotted using a power law relationship for damage accumulation. Reliability for a mission of 50,000 cycles at 150 N (90% 2-sided confidence intervals) was calculated. Differences between final failure loads during fatigue for each group were assessed by Kruskal-Wallis along with Benferroni's post hoc tests. Polarized-light and scanning electron microscopes were used for failure analyses. Results: The Beta (β) value (confidence interval range) derived from use level probability Weibull calculation of 1.30 (0.76-2.22), 1.17 (0.70-1.96), 1.12 (0.71-1.76), and 0.52 (0.30-0.89) for groups MC, SC, MS, and SS respectively, indicated that fatigue was an accelerating factor for all groups, except for SS. The calculated reliability was higher for SC (99%) compared to MC (87%). No difference was observed between screwed restorations (MS - 29%, SS - 43%). Failure involved abutment screw fracture for all groups. The cemented groups (MC, SC) presented more abutment and implant fractures. Significantly higher load to fracture values were observed for SC and MC relative to MS and SS (P < 0.001). Conclusion: Since reliability and strength to failure was higher for SC than for MC, our postulated null hypothesis was rejected. © 2012 John Wiley & Sons A/S.
Resumo:
Objective: Biological and mechanical implant-abutment connection complications and failures are still present in clinical practice, frequently compromising oral function. The purpose of this study was to evaluate the reliability and failure modes of anterior single-unit restorations in internal conical interface (ICI) implants using step-stress accelerated life testing (SSALT). Materials and methods: Forty-two ICI implants were distributed in two groups (n = 21 each): group AT-OsseoSpeed™ TX (Astra Tech, Waltham, MA, USA); group SV-Duocon System Line, Morse Taper (Signo Vinces Ltda., Campo Largo, PR, Brazil). The corresponding abutments were screwed to the implants and standardized maxillary central incisor metal crowns were cemented and subjected to SSALT in water. Use-level probability Weibull curves and reliability for a mission of 50,000 cycles at 200 N were calculated. Differences between groups were assessed by Kruskal-Wallis along with Bonferroni's post-hoc tests. Polarized-light and scanning electron microscopes were used for failure analyses. Results: The Beta (β) value derived from use level probability Weibull calculation was 1.62 (1.01-2.58) for group AT and 2.56 (1.76-3.74) for group SV, indicating that fatigue was an accelerating factor for failure of both groups. The reliability for group AT was 0.95 and for group SV was 0.88. Kruskal-Wallis along with Bonferroni's post-hoc tests showed no significant difference between the groups tested (P > 0.27). In all specimens of both groups, the chief failure mode was abutment fracture at the conical joint region and screw fracture at neck's region. Conclusions: Reliability was not different between investigated ICI connections supporting maxillary incisor crowns. Failure modes were similar. © 2012 John Wiley & Sons A/S.
Resumo:
Objective. Considering that patients' satisfaction is one of the most important goals in conducting removable dental prosthesis (RDP) therapy and the fact that there are many factors which influence this parameter, the present study aims to evaluate the expectation before and satisfaction after therapy with RDP in patients who seek such therapy. As a secondary objective, other variables that may be associated with patient satisfaction are also evaluated, such as gender, age, Kennedy's classification of the arch supporting the RDP, the number of RDP adjustments after delivery and patients' evaluation of the dentists' conduct. Materials and methods. A sample of 44 patients who received RDP therapy were assigned visual analog scale scores for their expectation before and satisfaction after therapy regarding chewing, aesthetics, comfort and phonetics. They also completed a questionnaire concerning the dentists' conduct. Results. There was no statistically significant difference among scores concerning different genders, age, number of post-delivery settings and arch involved in the RDP. Regarding patients' evaluation of the dentists' conduct, there was a predominance of positive evaluations, but only different answers to the statement (i.e. 'The dentist I saw thoroughly explained the recommended treatment before it commenced') present statistically significant different scores for chewing (p = 0.040) and phonetics (p = 0.046). Conclusions. The average visual analog scale scores were high for both expectation prior to treatment and satisfaction after treatment; however, the scores for expectations were higher than those for satisfaction. © 2013 Informa Healthcare.
Resumo:
Metallic biomaterials are used to reinforce or to restore the form and function of hard tissues. Implants and prosthesis are used to replace shoulders, knees, hips and teeth. When these materials are inserted in bone several biological reactions happen. This process can be associated to surface properties (topography, roughness and surface energy). In this work, the influence of biomimetic surface treatment in the osseointegration of Ti-30Ta dental implants was evaluated. Ingots were obtained from titanium and tantalum by using an arc-melting furnace. They were submitted to heat treatment at 1,100°C for 1 h, cooled in water and cold worked by swaging. Then, screw-shaped implants (2.0 mm diameter by 2.5 mm length) were manufactured and they were implanted in a rat's femur. Animals were divided into two groups: untreated (control group) and treated (biomimetic surface treatment). They were sacrificed 30 days after implantation. For histological analysis, implants with surrounding tissue were removed and immersed in formaldehyde. Samples were embedded in polymethyl methacrylate and after polymerization, cut with a saw, polished and mounted on glass slides. The results obtained suggest that biomimetic surface treatment was able to promote an increase osseointegration on the surface of dental implants. © Springer-Verlag Berlin Heidelberg 2013.
Resumo:
The rehabilitation with oral implants is, without any doubt, a consecrated technique. But often we face situations of high bone atrophy where the conventional installation of dental implants is not possible. The posterior mandible, when severely resorbed, generally requires complex techniques to be rehabilitated with implants, such as the lateralization of the inferior alveolar nerve. As an option for these cases, this paper proposes the use of short implants for the rehabilitation of severely resorbed posterior mandible. Copyright © 2013 by Mutaz B. Habal, MD.
Resumo:
Objective: The aim of this study was to compare the production of the chemokines CCL3 and CXCL12 by cultured dental pulp fibroblasts from permanent (PDPF) and deciduous (DDPF) teeth under stimulation by Porphyromonas gingivalis LPS (PgLPS). Material and Methods: Primary culture of fibroblasts from permanent (n=3) and deciduous (n=2) teeth were established using an explant technique. After the fourth passage, fibroblasts were stimulated by increasing concentrations of PgLPS (0 - 10 pg/mL) at 1, 6 and 24 h. The cells were tested for viability through MTT assay, and production of the chemokines CCL3 and CXCL12 was determined through ELISA. Comparisons among samples were performed using One-way ANOVA for MTT assay and Two-way ANOVA for ELISA results. Results: Cell viability was not affected by the antigen after 24 h of stimulation. PgLPS induced the production of CCL3 by dental pulp fibroblasts at similar levels for both permanent and deciduous pulp fibroblasts. Production of CXCL12, however, was significantly higher for PDPF than DDPF at 1 and 6 h. PgLPS, in turn, downregulated the production of CXCL12 by PDPF but not by DDPF. Conclusion: These data suggest that dental pulp fibroblasts from permanent and deciduous teeth may present a differential behavior under PgLPS stimulation.
Resumo:
The aim of the study was to evaluate mechanical behavior of implants inserted in three substrates, by measuring the pullout strength and the relative stiffness. 32 implants (Master Porous-Conexao, cylindrical, external hexagon, and surface treatment) were divided into 4 groups (n = 8): pig rib bone, polyurethane Synbone, polyurethane Nacional 40 PCF, and pinus wood. Implants were installed with the exact distance of 5 mm of another implant. The insertion torque (N·cm) was quantified using the digital Kratos torque meter and the pullout test (N) was performed by an axial traction force toward the long axis of the implant (2 min/mm) through mount implant devices attached to a piece adapted to a load cell of 200 Kg of a universal testing machine (Emic DL10000). Data of insertion torque and maximum pullout force were submitted to one-way ANOVA and Bonferroni tests (α = 0.05). Polyurethane Nacional 40 PCF and pinus wood showed the highest values of insertion torque and pullout force, with significant statistical difference (P < 0.05) with other groups. The analysis showed stiffness materials with the highest values for primary stability. © 2013 Nathalia Ferraz Oliscovicz et al.
Resumo:
Objective: The aim of this study was to evaluate the degree of conversion and hardness of different composite resins, photo-activated for 40 s with two different light guide tips, fiber optic and polymer. Methods: Five specimens were made for each group evaluated. The percentage of unreacted carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1. The Vickers hardness measurements were performed in a universal testing machine. A 50 gf load was used and the indenter with a dwell time of 30 seconds. The degree of conversion and hardness mean values were analyzed separately by ANOVA and Tukey's test, with a significance level set at 5%. Results: The mean values of degree of conversion for the polymer and fiber optic light guide tip were statistically different (P<.001). The hardness mean values were statistically different among the light guide tips (P<.001), but also there was difference between top and bottom surfaces (P<.001). Conclusions: The results showed that the resins photo-activated with the fiber optic light guide tip promoted higher values for degree of conversion and hardness.
Resumo:
Background: It has been reported that titanium-zirconium alloy with 13-17% zirconium (TiZr1317) implants show higher biomechanical stability and bone area percentage relative to commercially pure titanium (cpTi) grade 4 fixtures. Purpose: This study aimed to determine whether the higher stability for TiZr1317 implants is associated with higher mechanical properties of remodeling bone in the areas around the implants. Materials and Methods: This study utilized 36 implants (n=18: TiZr1317, n=18: cpTi), which were placed in the healed ridges of the mandibular premolar and first molar of 12 mini pigs (n=3 implants/animal). After 4 weeks in vivo, the samples were retrieved, and resin-embedded histologic sections of approximately 100μm in thickness were prepared. In order to determine the nanomechanical properties, nanoindentation (n=30 tests/specimen) was performed on the bone tissue of the sections under wet conditions with maximum load of 300μN (loading rate: 60μN/s). Results: The mean (±standard deviation) elastic modulus (E) and hardness (H) for the TiZr1317 group were 2.73±0.50GPa and 0.116±0.017GPa, respectively. For the cpTi group, values were 2.68±0.51GPa and 0.110±0.017GPa for E and H, respectively. Although slightly higher mechanical properties values were observed for the TiZr1317 implants relative to the cpTi for both elastic modulus and hardness, these differences were not significant (E=p>0.75; H=p>0.59). Conclusions: The titanium-zirconium alloy used in this study presented similar degrees of nanomechanical properties to that of the cpTi implants. © 2013 Wiley Periodicals, Inc.
Resumo:
The aim of this study was to evaluate the compressive strength of microhybrid (Filtek™ Z250) and nanofilled (Filtek™ Supreme XT) composite resins photo-activated with two different light guide tips, fiber optic and polymer, coupled with one LED. The power density was 653 mW cm -2 when using the fiber optic light tip and 596 mW cm-2 with the polymer. After storage in distilled water at 37 ± 2 °C for seven days, the samples were subjected to mechanical testing of compressive strength in an EMIC universal mechanical testing machine with a load cell of 5 kN and speed of 0.5 mm min-1. The statistical analysis was performed using ANOVA with a confidence interval of 95% and Tamhane's test. The results showed that the mean values of compressive strength were not influenced by the different light tips (p > 0.05). However, a statistical difference was observed (p < 0.001) between the microhybrid composite resin photo-activated with the fiber optic light tip and the nanofilled composite resin. Based on these results, it can be concluded that microhybrid composite resin photo-activated with the fiber optic light tip showed better results than nanofilled, regardless of the tip used, and the type of the light tip did not influence the compressive strength of either composite. Thus, the presented results suggest that both the fiber optic and polymer light guide tips provide adequate compressive strength to be used to make restorations. However, the fiber optic light tip associated with microhybrid composite resin may be an interesting option for restorations mainly in posterior teeth. © 2013 Astro Ltd.
Resumo:
Objective: To evaluate the correlations between clinical-radiographical aspects and histomorphometric-molecular parameters of endosseous dental implant sites in humans. Material and methods: The study sample consisted of bone implant sites from the jawbones of 32 volunteers, which were classified according to two different systems: (1) based only on periapical and panoramic images (PP); (2) as proposed by Lekholm & Zarb (L&Z). Bone biopsies were removed using trephine during the first drilling for implant placement. Samples were stained with haematoxylin-eosin (HE), and histomorphometric analysis was performed to obtain the following parameters: trabecular thickness (Tb.Th), trabecular number, bone volume density (BV/TV), bone specific surface (BS/BV), bone surface density and trabecular separation (Tb.Sp). In addition, immunohistochemistry analysis was performed on bone tissue samples for the proteins, Receptor activator of nuclear factor kappa-B (RANK), RANK ligand (RANKL), osteoprotegerin (OPG) and Osteocalcin (OC). Also, the determination of the relative levels of gene expression was performed using Reverse transcription-real-time Polymerase Chain Reaction (RT-PCR). Results: PP and L&Z classification systems revealed a moderate correlation with BV/TV, BS/BV, Tb.Th and Tb.Sp. L&Z's system identified differences among bone types when BV/TV, BS/BV, Tb.Th and Tb.Sp were compared. A weak correlation between PP/L&Z classifications and the expression of bone metabolism regulators (RANK, RANKL, OPG e OC) was found. The analysis of mRNA expression showed no difference between the bone types evaluated. Conclusions: Our results suggest that PP and L&Z subjective bone-type classification systems are related to histomorphometric aspects. These data may contribute to the validation of these classifications. Bone remodelling regulatory molecules do not seem to influence morphological aspects of the jawbone © 2011 John Wiley & Sons A/S.
Resumo:
This study involved observational assessment of work posture in relation to recommended ergonomic posture the requirements necessary for ergonomic posture among students in the final year of a degree program at the School of Dentistry of Araraquara-UNESP/Brazil (n =73) and investigation of the association of work posture with sex, the type of procedure, four-handed dentistry, and the region of the mouth being treated. The work posture of the students during 250 clinical procedures was observed by means of pictures. Each procedure received a posture classification: Adequate, partially adequate, or inadequate. A descriptive statistical analysis was conducted. The prevalence of final posture classification was calculated using 95% confidence intervals and point estimate. Associations of interest were studied using the chi-square test, with a 5% significance level. It was concluded that the prevalence of procedures performed with partially adequate posture was high, and that the final work posture classification was not associated with the variables of interest. © 2013 Taylor & Francis Group.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)