426 resultados para Rhizome sugars
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The biomass resulting from processing sugarcane bagasse has been considered a source of cellulose with the potential production of bio-fuels. This lignocellulose can be processed into ethanol since is hydrolyzed by chemical processes (acids) or biotechnology (enzymes) which generate sugars suit for fermentation. This study had the objective to utilize physical and chemical pre-treatment processes for prehydrolysis of sugarcane bagasse. The experimental treatment was adjusted at a factor of 4 X 2, by the combination of pre-hydrolysis timing (15, 30, 45 and 60 minutes) and sulfuric acid concentrations (7.0% and 9.0%) which was incubated at a temperature of 121° C in an autoclave. The treatment data was subjected to analysis of the variance and averages which were compared using the Tukey test with a probability of 5%. The results obtained showed that through pretreatment acid applied on the lignocellulose material, there was a significant break from the substrate fibers like cellulose, hemicellulose and lignin.
Resumo:
The carbohydrate storage is necessary to support the plant growth in periods of stress, during the dormancy, in the beginning of the vegetative development and during the fruiting time. In this context, this work intended to evaluate the carbohydrate concentrations of the peach (Prunus persica (L.) Batsch) tree ‘BRS Rubimel’, cultivated under subtropical conditions. The experiment was performed at the experimental farm Lageado, of the Faculty of Agricultural Sciences of UNESP at Botucatu/SP. The evaluated peach trees were two years old and were cultivated in the spacing of 6.0 x 4.0 m. The adopted experimental delineation was in randomized blocks, making use of four plants per parcel with four repetitions. The treatments corresponded to the period of the collection of leaves and branches, during the annual cycle, corresponding to January to May and July to December 2012. The sample collection of the roots was performed in January, April, August, November and December 2012. Four fruits per plant were collected. The concentration of starch in the roots of the peach tree were superior to the ones from the branches, from August to December. The carbohydrate with the higher storage level in the peach tree ‘BRS Rubimel’ was starch.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The production of ethanol and sugar from sugarcane juice generate as byproduct, the bagasse. Currently, the bagasse, an industrial lignocellulosic biomass, can be used for production of second-generation ethanol, since when it is submitted to hydrolytic processes generates fermentable sugars. The objective of this study was to produce fungal enzymes capable of hydrolyzing this lignocellulosic biomass to generate glucose. For this, we used the mushroom species Lentinula edodes, Pleurotus ostreatus, Pleurotus eryngii, and Pycnoporus sanguineus as potential sources of laccase, manganese peroxidase and lignin peroxidase enzymes, capable of hydrolyzing the crushed sugarcane. The hydrolysis process was performed with the highest enzymatic activities observed from laccase in L. edodes (39.23 U-mL after 25 day incubation), P. ostreatus (2.5 U U-mL after 27 day incubation), P. sanguineus (80 U-mL after 27 days of incubation) and P. eryngii (16.45 U-mL 15 days incubation). MnP and LiP showed no significant results. The enzymatic hydrolysis of sugarcane bagasse in natura (32,17% hemicellulose, cellulose 52,45% and 10,62% lignin) and bagasse hydrolyzate with 7,0% H2SO4 (0,20% hemicellulose, 68,82% to 25,33% cellulose and lignin) were evaluated for each enzymatic obtained. Compared to others, the enzymes produced by P. sanguineus incubated in sugarcane bagasse showed better efficiency resulting in glucose with an average content of 0,14 g-L. Although the levels of glucose determined in this work were low in relation to the literature, it can be stated that the laccase, manganese peroxidase and lignin peroxidase enzymes demonstrated good hydrolytic potential, especially those produced by the fungus P. sanguineus.
Resumo:
This work aimed to analyze the chemical composition and paste properties of cassava flours, from several producers and classifications, marked in different Brazilian cities. Flours were characterized to moisture, ash, fibers, protein, lipids, total sugars and starch. The paste properties were analyzed in RVA. The results showed significant differences to chemical components in cassava flours. The moisture ranged from 4.39 to 10.26, starch (82.19 to 88.90%), ash (0.48 to 1.07%), fiber (3.23 to 6.41%), protein (1.15 to 2.13%), total sugar (0.05 to 0.56%) and lipids (0.40 to 1.24). These differences can be due the variations of raw material and process. The paste properties of flours were different, with viscosity peak ranged from 73.33 to 387.08 RVU, breakdown (2.42 to 248.83RVU, final viscosity (154.92 to 275.5 RVU) and retrogradation tendency (50.75 to 132.5 RVU), showing the influence of kind of processing on flour viscosity.