549 resultados para Distribuição pelo hábitat
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBB
Resumo:
Pós-graduação em Doenças Tropicais - FMB
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBB
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A expansão da obesidade em diversos países do mundo na última década tem resultado no aumento da morbidade e mortalidade por hipertensão arterial e suas complicações. O objetivo deste trabalho é analisar a distribuição espacial da obesidade e hipertensão arterial no estado de São Paulo no período de 2000 a 2010, a partir de registros hospitalares e internação do Sistema de Informações Hospitalares do Sistema Único de Saúde (SIH - SUS). Foram utilizados coeficientes de prevalência das doenças em cada município suavizadas pelo método bayesiano empírico, permitindo uma visualização do padrão espacial dessas morbidades no Estado. Foi explorada a dependência espacial destes padrões verificando a autocorrelação entre os indicadores por meio do cálculo do Índice de Autocorrelação Espacial de Moran. Além disso, estudou-se a correlação positiva (Pearson) entre obesidade e hipertensão. Os dados e os mapas mostraram clusters de 87 municípios onde há maior e menor prevalência de hipertensão e obesidade no espaço com forte autocorrelação entre os municípios vizinhos. O coeficiente correlação de Pearson encontrado para esses municípios foi de 0,404 e sugere associação entre as morbidades. As técnicas de análise espacial mostraram-se úteis para o planejamento de ações de saúde pública.
Resumo:
The knowledge on spatial distribution of soil properties by means of geostatistics is important as an indicator for a better soil use and management. This study aimed at evaluating the spatial distribution of soil chemical properties, in a forest and pasture area in Manicoré, Amazonas State, Brazil. Grids with 70.00 m x 70.00 m, with regular spacing of 10.00 m x 10.00 m, totaling 64 points, were established, and then soil samples were collected at the depths of 0.0-0.20 m and 0.40-0.60 m and had their chemical properties determined. Data were analyzed by using descriptive statistics and geostatistics, and the sampling density analysis was based on the coefficient of variation and semivariograms range. The mean and median values were adjusted to the closest values, indicating normal distribution, while the spherical, exponential and gaussian models were adjusted to the soil chemical properties. It was concluded that the geostatistics provided adequate information for understanding the spatial distribution. The forest area showed a higher spatial continuity and the pasture area a lower sampling density. The chemical properties showed differences in the spatial variability, while the range represented better the estimates for sampling density and spacing, in the forest and pasture area.
Resumo:
Phosphorus is one of the limiting nutrients for sugarcane development in Brazilian soils. The spatial variability of this nutrient is great, defined by the properties that control its adsorption and desorption reactions. Spatial estimates to characterize this variability are based on geostatistical interpolation. However, inherent uncertainties in the procedure of these estimates are related to the variability structure of the property under study and the sample configuration of the area. Thus, the assessment of the uncertainty of estimates associated with the spatial distribution of available P (Plabile) is decisive to optimize the use of phosphate fertilizers. The purpose of this study was to evaluate the performance of sequential Gaussian simulation (sGs) and ordinary kriging (OK) in the modeling of uncertainty in available P estimates. A sampling grid with 626 points was established in a 200-ha experimental sugarcane field in Tabapuã, São Paulo State. The sGs algorithm generated 200 realizations. The sGs realizations reproduced the statistics and the distribution of the sample data. The G statistic (0.81) indicated good agreement between the values of simulated and observed fractions. The sGs realizations preserved the spatial variability of Plabile without the smoothing effect of the OK map. The accuracy in the reproduction of the variogram of the sample data obtained by the sGs realizations was on average 240 times higher than that obtained by OK. The uncertainty map, obtained by OK, showed less variation in the study area than that obtained by sGs. Thus, the evaluation of uncertainties by sGs was more informative and can be used to define and delimit specific management areas more precisely.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS