483 resultados para CERN LHC


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results are reported from a search for the effects of contact interactions using events with a high-mass, oppositely charged muon pair. The events are collected in proton-proton collisions at √s=7 TeV using the Compact Muon Solenoid detector at the Large Hadron Collider. The data sample corresponds to an integrated luminosity of 5.3 fb-1. The observed dimuon mass spectrum is consistent with that expected from the standard model. The data are interpreted in the context of a quark- and muon-compositeness model with a left-handed isoscalar current and an energy scale parameter Λ. The 95% confidence level lower limit on Λ is 9.5 TeV under the assumption of destructive interference between the standard model and contact-interaction amplitudes. For constructive interference, the limit is 13.1 TeV. These limits are comparable to the most stringent ones reported to date. © 2013 CERN. Published by the American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results are presented from a search for the pair-production of heavy quarks, QQ̄, that decay exclusively into a top quark and a W or Z boson. The search is performed using a sample of proton-proton collisions at √s = 7 TeV corresponding to an integrated luminosity of 5.0 fb-1, collected by the Compact Muon Solenoid experiment. The signal region is defined using a sample of events containing one electron or muon, missing transverse momentum, and at least four jets with large transverse momenta, where one jet is likely to originate from the decay of a bottom quark. No significant excess of events is observed with respect to the standard model expectations. Assuming a strong pair-production mechanism, quark masses below 675 (625) GeV decaying into tW (tZ) are excluded at the 95 % confidence level.[Figure not available: see fulltext.] © 2013 CERN for the benefit of the CMS collaboration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many models of new physics, including versions of supersymmetry (SUSY), predict production of events with low missing transverse energy, electroweak gauge bosons, and many energetic final-state particles. The stealth SUSY model yields this signature while conserving R-parity by means of a new hidden sector in which SUSY is approximately conserved. The results of a general search for new physics, with no requirement on missing transverse energy, in events with two photons and four or more hadronic jets are reported. The study is based on a sample of proton-proton collisions at s=7TeV corresponding to 4.96fb-1 of integrated luminosity collected with the CMS detector in 2011. Based on good agreement between the data and the standard model expectation, the data are used to determine model-independent cross-section limits and a limit on the squark mass in the framework of stealth SUSY. With this first study of its kind, squark masses less than 1430 GeV are excluded at the 95% confidence level. © 2012 CERN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The polarizations of the υ(1S), υ(2S), and υ(3S) mesons are measured in proton-proton collisions at √s=7 TeV, using a data sample of υ(nS)→μ+μ- decays collected by the CMS experiment, corresponding to an integrated luminosity of 4.9 fb-1. The dimuon decay angular distributions are analyzed in three different polarization frames. The polarization parameters λ™, λφ, and λ, as well as the frame-invariant quantity λ, are presented as a function of the υ(nS) transverse momentum between 10 and 50 GeV, in the rapidity ranges |y|<0.6 and 0.6<|y|<1.2. No evidence of large transverse or longitudinal polarizations is seen in the explored kinematic region. © 2013 CERN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A search motivated by supersymmetric models with light top squarks is presented using proton-proton collision data recorded with the CMS detector at a center-of-mass energy of √s=7 TeV during 2011, corresponding to an integrated luminosity of 4.98 fb-1. The analysis is based on final states with a single lepton, b-quark jets, and missing transverse energy. Standard model yields are predicted from data using two different approaches. The observed event numbers are found to be compatible with these predictions. Results are interpreted in the context of the constrained minimal supersymmetric standard model and of a simplified model with four top quarks in the final state. © 2013 CERN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A search for new physics is performed using events with isolated same-sign leptons and at least two bottom-quark jets in the final state. Results are based on a sample of proton-proton collisions collected at a center-of-mass energy of 8 TeV with the CMS detector and corresponding to an integrated luminosity of 10.5 fb-1. No excess above the standard model background is observed. Upper limits are set on the number of events from non-standard-model sources and are used to constrain a number of new physics models. Information on acceptance and efficiencies is also provided so that the results can be used to confront an even broader class of new physics models. © 2013 CERN for the benefit of the CMS collaboration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A search for physics beyond the standard model involving events with one or more photons, jets, and missing transverse energy has been performed by the CMS experiment. The data sample corresponds to an integrated luminosity of 4.93 fb-1 of proton-proton collisions at √s =7 TeV, produced at the Large Hadron Collider. No excess of events with large missing transverse energy is observed beyond expectations from standard model processes, and upper limits on the signal production cross sections for new physics processes are set at the 95% confidence level. The results of this search are interpreted in the context of three models of new physics: a general model of gauge-mediated supersymmetry breaking, Simplified Models, and a theory involving universal extra dimensions. In the absence of evidence for new physics, exclusion regions are derived in the parameter spaces of the respective models.[Figure not available: see fulltext.] © 2013 CERN for the benefit of the CMS collaboration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We verify that SU(N)TC⊗ - SU(3) L⊗ - U(1)X models, where the gauge symmetry breaking is totally dynamical and promoted by the non-Abelian technicolor group and the strong Abelian interactions, are quite constrained by the LHC data. The theory contains a T quark self-energy involving the mixing between the neutral gauge bosons, which introduces the coupling between the light and heavy composite scalar bosons of the model. We determine the lightest scalar boson mass for these models from an effective action for composite operators, assuming details about the dynamics of the strong interaction theories. Comparing the value of this mass with the ATLAS and CMS observation of a new boson with a mass M∼125 GeV and considering the lower bound determined by the LHC Collaboration on the heavy neutral gauge boson (Z′) present in these models, we can establish constraints on the possible models. For example, if SU(N)TC≡SU(2)TC, with technifermions in the fundamental representation, the model barely survives the confrontation with the LHC data. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

If the electroweak symmetry breaking is originated from a strongly coupled sector, as for instance in composite Higgs models, the Higgs boson couplings can deviate from their Standard Model values. In such cases, at sufficiently high energies there could occur an onset of multiple Higgs boson and longitudinally polarised electroweak gauge boson (V L ) production. We study the sensitivity to anomalous Higgs couplings in inelastic processes with 3 and 4 particles (either Higgs bosons or V L 's) in the final state. We show that, due to the more severe cancellations in the corresponding amplitudes as compared to the usual 2 → 2 processes, large enhancements with respect to the Standard Model can arise even for small modifications of the Higgs couplings. In particular, we find that triple Higgs production provides the best multiparticle channel to look for these deviations. We briefly explore the consequences of multiparticle production at the LHC. © 2013 SISSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recently proposed scenario for baryogenesis, called post-sphaleron baryogenesis (PSB), is discussed within a class of quark-lepton unified framework based on the gauge symmetry SU(2)L×SU(2) R×SU(4)c realized in the multi-TeV scale. The baryon asymmetry of the Universe in this model is produced below the electroweak phase transition temperature after the sphalerons have decoupled from the Hubble expansion. These models embed naturally the seesaw mechanism for neutrino masses and predict color-sextet scalar particles in the TeV range which may be accessible to the LHC experiments. A necessary consequence of this scenario is the baryon-number-violating ΔB=2 process of neutron-antineutron (n-n̄) oscillations. In this paper we show that the constraints of PSB, when combined with the neutrino oscillation data and restrictions from flavor changing neutral currents mediated by the colored scalars, imply an upper limit on the n-n̄ oscillation time of 5×1010 sec regardless of the quark-lepton unification scale. If this scale is relatively low, in the (200-250) TeV range, τn-n̄ is predicted to be less than 1010 sec, which is accessible to the next generation of proposed experiments. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simultaneous measurement of the top-quark, W-boson, and neutrino masses is reported for tt̄ events selected in the dilepton final state from a data sample corresponding to an integrated luminosity of 5.0 fb-1 collected by the CMS experiment in pp collisions at √s = 7 TeV. The analysis is based on endpoint determinations in kinematic distributions. When the neutrino and W-boson masses are constrained to their world-average values, a top-quark mass value of Mt = 173.9 ± 0.9 (stat)+1.7 -2.1(syst.) GeV is obtained. When such constraints are not used, the three particle masses are obtained in a simultaneous fit. In this unconstrained mode the study serves as a test of mass determination methods that may be used in beyond standard model physics scenarios where several masses in a decay chain may be unknown and undetected particles lead to underconstrained kinematics. © 2013 CERN for the benefit of the CMS collaboration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Searches are reported for Higgs bosons in the context of either the standard model extended to include a fourth generation of fermions (SM4) with masses of up to 600 GeV or fermiophobic models. For the former, results from three decay modes (ττ, WW, and ZZ) are combined, whilst for the latter the diphoton decay is exploited. The analysed proton-proton collision data correspond to integrated luminosities of up to 5.1 fb-1 at 7 TeV and up to 5.3 fb-1 at 8 TeV. The observed results exclude the SM4 Higgs boson in the mass range 110-600 GeV at 99% confidence level (CL), and in the mass range 110-560 GeV at 99.9% CL. A fermiophobic Higgs boson is excluded in the mass range 110-147 GeV at 95% CL, and in the range 110-133 GeV at 99% CL. The recently observed boson with a mass near 125 GeV is not consistent with either an SM4 or a fermiophobic Higgs boson. © 2013 CERN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: Results of searches for heavy stable charged particles produced in pp collisions at □ = 7 and 8 TeV are presented corresponding to an integrated luminosity of 5.0 fb-1 and 18.8 fb-1, respectively. Data collected with the CMS detector are used to study the momentum, energy deposition, and time-of-flight of signal candidates. Leptons with an electric charge between e/3 and 8e, as well as bound states that can undergo charge exchange with the detector material, are studied. Analysis results are presented for various combinations of signatures in the inner tracker only, inner tracker and muon detector, and muon detector only. Detector signatures utilized are long time-of-flight to the outer muon system and anomalously high (or low) energy deposition in the inner tracker. The data are consistent with the expected background, and upper limits are set on the production cross section of long-lived gluinos, scalar top quarks, and scalar τ leptons, as well as pair produced long-lived leptons. Corresponding lower mass limits, ranging up to 1322 GeV/c 2 for gluinos, are the most stringent to date. [Figure not available: see fulltext.] © 2013 Cern for the benefit of the CMS collaboration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the possibilities of New Physics affecting the Standard Model (SM) Higgs sector. An effective Lagrangian with dimension-six operators is used to capture the effect of New Physics. We carry out a global Bayesian inference analysis, considering the recent LHC data set including all available correlations, as well as results from Tevatron. Trilinear gauge boson couplings and electroweak precision observables are also taken into account. The case of weak bosons tensorial couplings is closely examined and NLO QCD corrections are taken into account in the deviations we predict. We consider two scenarios, one where the coefficients of all the dimension-six operators are essentially unconstrained, and one where a certain subset is loop suppressed. In both scenarios, we find that large deviations from some of the SM Higgs couplings can still be present, assuming New Physics arising at 3 TeV. In particular, we find that a significantly reduced coupling of the Higgs to the top quark is possible and slightly favored by searches on Higgs production in association with top quark pairs. The total width of the Higgs boson is only weakly constrained and can vary between 0.7 and 2.7 times the Standard Model value within 95% Bayesian credible interval (BCI). We also observe sizeable effects induced by New Physics contributions to tensorial couplings. In particular, the Higgs boson decay width into Zγ can be enhanced by up to a factor 12 within 95% BCI. © 2013 SISSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A search for exclusive or quasi-exclusive W+W- production by photon-photon interactions, pp → p(*)W +W-p(*), at √s=7 TeV is reported using data collected by the CMS detector with an integrated luminosity of 5.05 fb-1. Events are selected by requiring a μ ±e∓ vertex with no additional associated charged tracks and dilepton transverse momentum p T(μ ±e∓) > 30 GeV. Two events passing all selection requirements are observed in the data, compared to a standard model expectation of 2.2 ± 0.4 signal events with 0.84 ± 0.15 background. The tail of the dilepton p T distribution is studied for deviations from the standard model. No events are observed with p T > 100 GeV. Model-independent upper limits are computed and compared to predictions involving anomalous quartic gauge couplings. The limits on the parameters α0,C W/λ2 with a dipole form factor and an energy cutoff Λcutoff = 500 GeV are of the order of 10-4. © 2013 CERN for the benefit of the CMS collaboration.