345 resultados para SCALAR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A search for supersymmetry in final states with jets and missing transverse energy is performed in pp collisions at a centre-of-mass energy of s=7 TeV. The data sample corresponds to an integrated luminosity of 4.98 fb-1 collected by the CMS experiment at the LHC. In this search, a dimensionless kinematic variable, α T, is used as the main discriminator between events with genuine and misreconstructed missing transverse energy. The search is performed in a signal region that is binned in the scalar sum of the transverse energy of jets and the number of jets identified as originating from a bottom quark. No excess of events over the standard model expectation is found. Exclusion limits are set in the parameter space of the constrained minimal supersymmetric extension of the standard model, and also in simplified models, with a special emphasis on compressed spectra and third-generation scenarios.[Figure not available: see fulltext.] © 2013 CERN for the benefit of the CMS Collaboration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results are presented from a search for the pair production of third-generation scalar and vector leptoquarks, as well as for top squarks in R-parity-violating supersymmetric models. In either scenario, the new, heavy particle decays into a τ lepton and a b quark. The search is based on a data sample of pp collisions at √s=7 TeV, which is collected by the CMS detector at the LHC and corresponds to an integrated luminosity of 4.8 fb -1. The number of observed events is found to be in agreement with the standard model prediction, and exclusion limits on mass parameters are obtained at the 95% confidence level. Vector leptoquarks with masses below 760 GeV are excluded and, if the branching fraction of the scalar leptoquark decay to a τ lepton and a b quark is assumed to be unity, third-generation scalar leptoquarks with masses below 525 GeV are ruled out. Top squarks with masses below 453 GeV are excluded for a typical benchmark scenario, and limits on the coupling between the top squark, τ lepton, and b quark, λ333′ are obtained. These results are the most stringent for these scenarios to date. © 2013 CERN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study is presented of the mass and spin-parity of the new boson recently observed at the LHC at a mass near 125 GeV. An integrated luminosity of 17.3 fb-1, collected by the CMS experiment in proton-proton collisions at center-of-mass energies of 7 and 8 TeV, is used. The measured mass in the ZZ channel, where both Z bosons decay to e or μ pairs, is 126.2±0.6(stat) ±0.2(syst) GeV. The angular distributions of the lepton pairs in this channel are sensitive to the spin-parity of the boson. Under the assumption of spin 0, the present data are consistent with the pure scalar hypothesis, while disfavoring the pure pseudoscalar hypothesis. © 2013 CERN. Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the low-energy elastic D̄N interaction using a quark model that confines color and realizes dynamical chiral symmetry breaking. The model is defined by a microscopic Hamiltonian inspired in the QCD Hamiltonian in Coulomb gauge. Constituent quark masses are obtained by solving a gap equation, and baryon and meson bound-state wave functions are obtained using a variational method. We derive a low-energy meson-nucleon potential from a quark-interchange mechanism whose ingredients are the quark-quark and quark-antiquark interactions and baryon and meson wave functions, all derived from the same microscopic Hamiltonian. The model is supplemented with (σ, ρ, ω, a0) single-meson exchanges to describe the long-range part of the interaction. Cross sections and phase shifts are obtained by iterating the quark-interchange plus meson-exchange potentials in a Lippmann-Schwinger equation. Once coupling constants of long-range scalar σ and a0 meson exchanges are adjusted to describe experimental phase shifts of the K+N and K0N reactions, predictions for cross sections and s-wave phase shifts for the D̄0N and D-N reactions are obtained without introducing new parameters. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We derive the node structure of the radial functions which are solutions of the Dirac equation with scalar S and vector V confining central potentials, in the conditions of exact spin or pseudospin symmetry, i.e., when one has V=±S+C, where C is a constant. We show that the node structure for exact spin symmetry is the same as the one for central potentials which go to zero at infinity but for exact pseudospin symmetry the structure is reversed. We obtain the important result that it is possible to have positive energy bound solutions in exact pseudospin symmetry conditions for confining potentials of any shape, including naturally those used in hadron physics, from nuclear to quark models. Since this does not occur for potentials going to zero at large distances, which are used in nuclear relativistic mean-field potentials or in the atomic nucleus, this shows the decisive importance of the asymptotic behavior of the scalar and vector central potentials on the onset of pseudospin symmetry and on the node structure of the radial functions. Finally, we show that these results are still valid for negative energy bound solutions for antifermions. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this letter we consider a specific model of braneworld with nonstandard dynamics diffused in the literature, specifically we focus our attention on the matter energy density, the energy of system, the Ricci scalar and the thin-brane limit. As the model is classically stable and capable of localize gravity, as a natural extension we address the issue of fermion localization of fermions on a thick brane constructed out from one scalar field with nonstandard kinetic terms coupled with gravity. The contribution of the nonstandard kinetic terms to the problem of fermion localization is analyzed. It is found that the simplest Yukawa coupling η ωφ ω supports the localization of fermions on the thick brane. It is shown that the zero mode for left-handed fermions can be localized on the thick brane depending on the values for the coupling constant η. Copyright © EPLA, 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main purpose of this study was to analyze the modified physical properties of an educational resource for facilitating the handling of a child with dyskinetic cerebral palsy. The participant of the study was a six year old child with dyskinetic cerebral palsy enrolled in a regular early childhood education classroom. The educational resource that was selected was a brick game, in which the physical properties of weight, size and texture had been modified. The analysis was made regarding the quality of upper limb movement to the variables: righting index, scalar displacement (s), average speed (As) and time (t). The results showed that combined large size and heavy weight did not have a satisfactory outcome, affecting both grasping the educational resource and fitting. There was also inconsistency in children with cerebral palsy's responses. There is variation in the results, though a standard cannot be established. Thus, this study contributed to understanding the motor responses of a child with dyskinetic cerebral palsy when participating in a fitting activity with educational resources in which the physical properties had been modified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use dimensional regularization (DR) to evaluate a one-loop four-point function to order g2 in a scalar φ4 model using the light-front coordinates and performing the light-front energy variable integration in the first place. The DR in the light-front is applied to the D - 2 transverse variables. We show the equivalence of the result thus obtained with the standard DR applied to D dimensions. © 2013 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been shown that well-behaved spacetimes may induce the vacuum fluctuations of some nonminimally coupled free scalar fields to go through a phase of exponential growth. Here, we discuss this mechanism in the context of spheroidal thin shells emphasizing the consequences of deviations from spherical symmetry. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recently proposed scenario for baryogenesis, called post-sphaleron baryogenesis (PSB), is discussed within a class of quark-lepton unified framework based on the gauge symmetry SU(2)L×SU(2) R×SU(4)c realized in the multi-TeV scale. The baryon asymmetry of the Universe in this model is produced below the electroweak phase transition temperature after the sphalerons have decoupled from the Hubble expansion. These models embed naturally the seesaw mechanism for neutrino masses and predict color-sextet scalar particles in the TeV range which may be accessible to the LHC experiments. A necessary consequence of this scenario is the baryon-number-violating ΔB=2 process of neutron-antineutron (n-n̄) oscillations. In this paper we show that the constraints of PSB, when combined with the neutrino oscillation data and restrictions from flavor changing neutral currents mediated by the colored scalars, imply an upper limit on the n-n̄ oscillation time of 5×1010 sec regardless of the quark-lepton unification scale. If this scale is relatively low, in the (200-250) TeV range, τn-n̄ is predicted to be less than 1010 sec, which is accessible to the next generation of proposed experiments. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we consider the propagation of two fermion fields interacting with each other by the exchange of intermediate scalar bosons in the light front. We obtain the corrections up to fourth order in the coupling constant using hierarchical equations in order to obtain the bound state equation (Bethe - Salpeter equation). © 2013 Chinese Physical Society and IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been proposed recently the existence of a non-minimal coupling between a canonical scalar field (quintessence) and gravity in the framework of teleparallel gravity, motivated by similar constructions in the context of General Relativity. The dynamics of the model, known as teleparallel dark energy, has been further developed, but no scaling attractor has been found. Here we consider a model in which the non-minimal coupling is ruled by a dynamically changing coefficient α≡f,φ/(f)1/2, with f(φ) an arbitrary function of the scalar field φ. It is shown that in this case the existence of scaling attractors is possible, which means that the universe will eventually enter these scaling attractors, regardless of the initial conditions. As a consequence, the cosmological coincidence problem could be alleviated without fine-tunings. © 2013 IOP Publishing Ltd and Sissa Medialab srl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed description is reported of the analysis used by the CMS Collaboration in the search for the standard model Higgs boson in pp collisions at the LHC, which led to the observation of a new boson. The data sample corresponds to integrated luminosities up to 5.1 fb-1 at √=7 TeV, and up to 5.3 fb-1 at √ s=8 TeV. The results for five Higgs boson decay modes γγ, ZZ, WW, ττ, and bb, which show a combined local significance of 5 standard deviations near 125 GeV, are reviewed. A fit to the invariant mass of the two high resolution channels, γγ and ZZ → 4ℓ, gives a mass estimate of 125.3 ± 0.4 (stat.) ± 0.5 (syst.) GeV. The measurements are interpreted in the context of the standard model Lagrangian for the scalar Higgs field interacting with fermions and vector bosons. The measured values of the corresponding couplings are compared to the standard model predictions. The hypothesis of custodial symmetry is tested through the measurement of the ratio of the couplings to the W and Z bosons. All the results are consistent, within their uncertainties, with the expectations for a standard model Higgs boson. [Figure not available: see fulltext.] © 2013 CERN for the benefit of the CMS collaboration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: Results of searches for heavy stable charged particles produced in pp collisions at □ = 7 and 8 TeV are presented corresponding to an integrated luminosity of 5.0 fb-1 and 18.8 fb-1, respectively. Data collected with the CMS detector are used to study the momentum, energy deposition, and time-of-flight of signal candidates. Leptons with an electric charge between e/3 and 8e, as well as bound states that can undergo charge exchange with the detector material, are studied. Analysis results are presented for various combinations of signatures in the inner tracker only, inner tracker and muon detector, and muon detector only. Detector signatures utilized are long time-of-flight to the outer muon system and anomalously high (or low) energy deposition in the inner tracker. The data are consistent with the expected background, and upper limits are set on the production cross section of long-lived gluinos, scalar top quarks, and scalar τ leptons, as well as pair produced long-lived leptons. Corresponding lower mass limits, ranging up to 1322 GeV/c 2 for gluinos, are the most stringent to date. [Figure not available: see fulltext.] © 2013 Cern for the benefit of the CMS collaboration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is possible to show that there are three independent families of models describing a massive spin-2 particle via a rank-2 tensor. One of them contains the massive Fierz-Pauli model, the only case described by a symmetric tensor. The three families have different local symmetries in the massless limit and can not be interconnected by any local field redefinition. We show here, however, that they can be related with the help of a decoupled and nondynamic (spectator) field. The spectator field may be either an antisymmetric tensor B μν=-Bνμ, a vector Aμ or a scalar field φ, corresponding to each of the three families. The addition of the extra field allows us to formulate master actions which interpolate between the symmetric Fierz-Pauli theory and the other models. We argue that massive gravity models based on the Fierz-Pauli theory are not expected to be equivalent to possible local self-interacting theories built up on top of the two new families of massive spin-2 models. The approach used here may be useful to investigate dual (nonsymmetric) formulations of higher-spin particles. © 2013 American Physical Society.