348 resultados para Raw Glass
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents the study results with glass-ceramics obtained from base glass (MgO-Al2O3- SiO2-Li2O system) with addition of ZrO2 as nucleating agent. The glass was melted at 1650 degrees C for 3 h and at a heating rate of 10 degrees C/min. The molten glass was poured into a graphite mold to obtain monolithic samples and also in water in order to obtain particulate material. Such material was grinded and then pressed by both uniaxial and isostatic pressing methods before being sintered. Both the monolithic and pressed samples were performed under two different conditions of heat treatment so that their nucleation and crystallization occurred. In the first one, the samples were heated to 1100 degrees C with a heating rate of 10 degrees C/min. In the second one, there was an initial heating rate of 10 degrees C/min up to 780 degrees C, which was kept for 5 minutes. After that, the samples were heated to 1100 degrees C at a heating rate of 1 degrees C/min. Microhardness analyses showed that base glass presented values around 7.0 GPa. The glass-ceramics obtained from the powder sintering showed microhardness values lower than those obtained from monolithic samples. The highest hardness values were observed in the samples which were treated with two heating rates, whose values were around 9.2 +/- 0.5 GPa. Moreover, the glass-ceramics which were produced with an only heating rate, presented values around 7.1 +/- 0.2 GPa, very close to those observed in the base glass.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Frequency upconversion (UC) processes involving energy transfer (ET) among Nd 3+ and Pr 3+ ions in a fluoroindate glass are reported. In a first experiment, the excitation of Pr 3+ [transition 3H 4→ 1D 2] and of Nd 3+ [transition 4I 9/2→( 2G 7/2+ 4G 5/2)] was achieved with a dye laser operating in the 575-590 nm range. In a second experiment, the Nd 3+ ions were excited with the second harmonic of a Nd: YAG laser at 532 nm. The ET processes leading to UC in both experiments were studied by monitoring the blue fluorescence decay at 480 nm due to the transition 3P 0→ 3H 4 in Pr 3+. In the more relevant UC process, quartets of ions (Nd-Nd-Pr-Pr) are excited due to absorption of three laser photons by two Nd 3+ ions which transfer their energy to two Pr 3+ ions. Each Pr 3+ ion promoted to the 3P 0 level decays to the ground state emitting one photon in the blue region. This conclusion was achieved investigating the dependence of the UC fluorescence intensity as a function of laser intensity, samples concentrations, and temporal behavior of the UC signal. Other UC processes involving nonisoionic groups of three ions are also reported. © 2002 American Institute of Physics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The purpose of this work was to evaluate the biological compatibility of the Sealapex, Apexit, Sealer 26 and Ketac Endo endodontic cements. Polyethylene tubes containing these cements were implanted in the subcutaneous tissue of 40 (forty) rats. The animals were sacrificed after 14 and 90 days. A descriptive analysis of the reactions found in the connective tissue by contact with the cements was performed. The magnitude of inflammatory infiltrate, the presence and predominance of cell types and their distribution as to the filling material and reparative phenomena, such as fibroblastic and angioblastic proliferation and formation of fibrous capsules, were subjectively measured. After 90 days, all cements presented statistically significant reduction of the inflammatory reaction, presence of a fibrous tissue capsule in contact with the opening of the tubes containing the filling materials, and reduction of fibroblastic proliferation. Angioblastic proliferation decreased only for the Sealer 26 and Ketac Endo groups. All cements tested were either partially or totally phagocyted, and the mildest inflammatory response was found for the Sealer 26 group at both evaluation periods.
Resumo:
This study evaluated the influence of different forms of heat treatment on a pre-hydrolyzed silane to improve the adhesion of phosphate monomer-based (MDP) resin cement to glass ceramic. Resin and feldspathic ceramic blocks (n=48, n=6 for bond test, n=2 for microscopy) were randomly divided into 6 groups and subject to surface treatments: G1: Hydrofluoric acid (HF) 9.6% for 20 s + Silane + MDP resin cement (Panavia F); G2: HF 9.6% for 20 s + Silane + Heat Treatment (oven) + Panavia F; G3: Silane + Heat Treatment (oven) + Panavia F; G4: HF 9.6% for 20 s + Silane + Heat Treatment (hot air) + Panavia F; G5: Silane + Heat Treatment (hot air) + Panavia F; G6: Silane + Panavia F. Microtensile bond strength (MTBS) test was performed using a universal testing machine (1 mm/min). After debonding, the substrate and adherent surfaces were analyzed using stereomicroscope and scanning electron microscope (SEM) to categorize the failure types. Data were analyzed statistically using two-way test ANOVA and Tukey's test (=0.05). Heat treatment of the silane containing MDP, with prior etching with HF (G2: 13.15 ± 0.89a; G4: 12.58 ± 1.03a) presented significantly higher bond strength values than the control group (G1: 9.16 ± 0.64b). The groups without prior etching (G3: 10.47 ± 0.70b; G5: 9.47 ± 0.32b) showed statistically similar bond strength values between them and the control group (G1). The silane application without prior etching and heat treatment resulted in the lowest mean bond strength (G6: 8.05 ± 0.37c). SEM analysis showed predominantly adhesive failures and EDS analysis showed common elements of spectra (Si, Na, Al, K, O, C) characterizing the microstructure of the glass-ceramic studied. Heat treatment of the pre-hydrolyzed silane containing MDP in an oven at 100 °C for 2 min or with hot air application at 50 ± 5 ºC for 1 min, was effective in increasing the bond strength values between the ceramic and resin cement containing MDP.
Resumo:
Precursor glass and glass-ceramics with molar composition 2Na2O·1CaO·3SiO2 are studied by infrared, conventional, and microprobe Raman techniques. The Gaussian deconvoluted Raman spectrum of the glass presents bands at 625 and 660 cm-1, attributed to bending vibrations of Si-O-Si bonds, and at 860, 920, 975, and 1030 cm-1, attributed to symmetric stretching vibrations of SiO4 tetrahedra with 4, 3, 2, and 1 nonbridging oxygens, respectively. The Raman microprobe spectrum of a highly crystallized sample presents two narrow and intense bands at about 590 and 980 cm-1, associated with vibrations of SiO4 tetrahedra with two nonbridging oxygens, in agreement with the predicted chain-like structure of crystalline metasilicates. Scanning electron microscopy shows that the crystals distributed in partially crystallized samples have a spherical shape, built up by radially oriented needle-like single crystals. The Raman microprobe spectra of these spherulites show that they still contain residual amorphous material. A comparison of Raman and infrared spectra of amorphous and highly crystallized samples is presented.
Resumo:
This in vitro study evaluated the demineralization around restorations class V made on the buccal and lingual surfaces of teeth when using different restorative materials. Thirty extracted teeth were randomly divided into 3 groups (n=10) according to the restorative material: Group I - Fuji II LC (GC America Inc., Alsip, Illinois, USA), Group II - Tetric (Ivoclar Vivadent AG, Schaan, Liechtenstein) and Group III - Chelon Fil (3M/ESPE., Seefeld, Germany). The teeth were submitted to a pH-cycling model associated to a thermocycling model. Sections were made and the specimens were analyzed under a polarized light microscopy as for the presence of demineralization. Measurements were performed and the results were subjected to statistical analysis using Anova and Tukey´s Test (α=0.05). Mean values of demineralization depth (µm) according to each positions showed that the demineralization was significantly reduced when Chelon Fil (Group III) was used for all depths, when compared to fluoridated resin materials. Also, it was verified that non-fluoridated resin material, composite resin Tetric, had the lowest inhibitory effect on the development of demineralization.
Resumo:
Objectives: The objective of this study was to evaluate the clinical performance of 124 non-carious cervical lesion restorations at 12 months. Materials And Methods: Three study groups were formed according to the material and technique used. All teeth received 37% phosphoric acid etching in enamel and dentin. The teeth of Group I received the conventional adhesive system Scotch Bond Multi Purpose, followed by resin composite Filtek Z350; teeth of Group II were restored with resin-modified glass-ionomer cement Fuji II LC; teeth of Group III were restored with the same resin-modified glass-ionomer cement however, before it was inserted, 2 coats of primer of the Scotch Bond Multi Purpose adhesive system were applied to dentinal tissue. The teeth were evaluated by 2 examiners with regard to the factors of retention, marginal adaptation, marginal discoloration, color alteration, presence of marginal caries lesion, anatomic shape, and sensitivity. Results: Application of the Kruskal-Wallis test showed no statistically significant difference for anatomic shape, marginal discoloration, color alteration, caries lesion, marginal adaptation, and sensitivity among the three study groups, but the variable retention presented statistically significant difference at 12 months, with Group III presenting a behavior superior to that of Group II but similar to that of Group I. Conclusion: The analyzed restorations of non-carious cervical lesions presented a good clinical performance at 12 months.
Resumo:
Objective: This confocal microscopy study evaluated the cement/dentin and cement/post interfaces along theroot canalwallswhenfiberglasspostswerebonded to dentin using different types of cements. Material & Methods: Thirty endodontically treated premolars were divided into 3 groups according to the adhesive materials used in the bonding procedure: Prime & Bond 2.1/Self Cure + Enforce, RelyX Unicem and RelyX Luting. Rhodamine B dye was incorporated in the luting materials for the cementation of the fiber glass posts (Exacto, Angelus) to dentin. Three transversal slices (apical, middle and coronal) were examined under confocal laser scanning microscopy. Statistical analysis was performed using the Kappa, Kruskal-Wallis and Dunnet tests, in a significance level of 5%. Results: The Prime & Bond 2.1/Self Cure + Enforce presented a uniform formation of tags in the dentin but gaps in the cement/dentin interface. The RelyX Unicem and RelyX Luting presented an adhesive interface with a fewer amount of gaps, but showed shorter tag formation than the Enforce system. All cements presented the same pattern of bubbles inside the cements. The RelyX Luting presented a greater amount of cracks inside the cement in comparison with the other cements in the coronal third, while no difference was observed between RelyX Unicem and Enforce. The RelyX Luting showed the lowest quantity of cement penetration into the post. Conclusion: In general, the quality of bonding interfaces of fiber posts luted to root canals was affected by both location and type of cement.