373 resultados para Leptospirosis in animals


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Melanocytes are found in various organs of ectothermic animals, playing a protective role against bacteria and free radicals. It is known that pigment cells from hematopoietic organs have immune functions. However, the role of visceral melanocytes is not well understood. Cutaneous melanocytes are responsive to α-melanocyte stimulating hormone (α-MSH), which is associated with the dispersion of melanin granules within melanocytes. α-MSH has also been reported to inhibit most forms of inflammatory responses by decreasing the pro-inflammatory cytokines and neutrophil migration. The present study evaluated the influence of an α-MSH analog (Nle4, D-Phe7-α-MSH) and lipopolysaccharides (LPS) from Escherichia coli on the liver and testicular tissues of the anuran Eupemphix nattereri. The tested hypotheses were: (i) the pigmented area will increase following hormone and LPS administration, (ii) pre-treatment with α-MSH will decrease the number of mast cells, and (iii) the hormone will have protective effects against LPS-induced responses. We found that hormone administration did not change hepatic pigmentation, but increased testicular pigmentation. Testicular pigmentation quickly increased after LPS administration, whereas there was a late response in the liver. The response of enhanced pigmentation was delayed and the number of mast cells decreased in animals previously treated with the α-MSH analog when compared to the LPS group. Hemosiderin and lipofuscin were found in melanomacrophages, but not in testicular melanocytes. Although both the liver and the testes of E. nattereri have pigmented cells, these are distinct in morphology, embryonic origin, and pigmentary substances. These differences may be responsible for the different responses of these cells to the α-MSH analog and LPS administration. © 2013 Elsevier GmbH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As a result of the need to develop new active principles for the control of endoparasites in ruminants, the present in vivo study evaluated a formulation containing 24% Aurixazol (48 mg/kg), a parasiticide molecule based on disophenolate of levamisole. Two experiments were conducted: one evaluating the anthelmintic efficacy of 24% Aurixazol (48 mg/kg) against gastrointestinal nematodes in naturally infected sheep, compared to an association of ivermectin (0.2 mg/kg) + albendazole (5.0 mg/kg) + levamisole (7.5 mg/kg) (IAL), and a second one which evaluated the persistent efficacy of the same formulation against immature stages (L4) and adults of Haemonchus contortus in experimentally infected animals. In experiment I, against H. contortus, the formulation of Aurixazol and the IAL association reached efficacies (arithmetic means) of 99.32% and 96.11%, respectively. For Trichostrongylus colubriformis, the efficacy values were 88.92% and 98.08% for Aurixazol and the IAL association, respectively. Both formulations were totally effective against Oesophagostomum columbianum (100%). The results of the statistical analysis demonstrated that the mean parasitic burden of treated animals was significantly different (P ≤ 0.05) compared to the average number of helminths diagnosed in animals from the control group for H. contortus, T. colubriformis and O. columbianum. Comparing only the treated groups, it was possible to verify that the average number of H. contortus recovered from animals treated with Aurixazol was different (P ≤ 0.05) when compared to the mean amount recovered from sheep treated with the IAL association. When evaluating the prevention of H. contortus infection in experiment II, Aurixazol did not present preventive efficacy. Up until 21 days after treatment the groups treated with Aurixazol contained less adults and L4 of H. contortus (P ≤ 0.05) when compared to the non-medicated control group. However, future studies will be necessary to assess the effectiveness of Aurixazol against nematode strains resistant to levamisole and disophenol, but the efficacy results described in this study allow to state that Aurixazol can, associated with other measures, become an important tool in the control of sheep nematodes. © 2013.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Biologia Geral e Aplicada - IBB

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)