322 resultados para BOND STRENGTHS
Resumo:
This study evaluated the effects of mechanical cycling on resin push-out bond strength to root dentin, using two strategies for fiber post cementation. Forty bovine roots were embedded in acrylic resin after root canal preparation using a custom drill of the fiber post system. The fiber posts were cemented into root canals using two different strategies (N = 20): a conventional adhesive approach using a three-step etch-and-rinse adhesive system combined with a conventional resin cement (ScotchBond Multi Purpose Plus + RelyX ARC ), or a simplified adhesive approach using a self-adhesive resin cement (RelyX U100). The core was built up with composite resin and half of the specimens from each cementation strategy were submitted to mechanical cycling (45 degree angle; 37 degrees C; 88 N; 4 Hz; 700,000 cycles). Each specimen was cross-sectioned and the disk specimens were pushed-out. The means from every group (n = 10) were statistically analyzed using a two-way ANOVA and a Tukey test (P = 0.05). The cementation strategy affected the push-out results (P < 0.001), while mechanical cycling did not (P = 0.3716). The simplified approach (a self-adhesive resin cement) had better bond performance despite the conditioning. The self-adhesive resin cement appears to be a good option for post cementation. Further trials are needed to confirm these results.
Resumo:
This study evaluated the influence of the surface pretreatment of indirect resin composite (Signum, Admira Lab and Sinfony) on the microtensile bond strength of a resin cement. Sixty samples made of each brand were divided into 6 groups, according to surface treatment: (1) control; (2) controlled-air abrasion with Al2O3; (3) Er:YAG Laser 200 mJ, 10 Hz, for 10s; (4) Er: YAG Laser 300 mJ, 10 Hz, for 10 s; (5) Nd:YAG 80 mJ, S15Hz for 1 min; (6) Nd:YAG 120mJ, 15 Hz for 1 min. After treatments, all the groups received an application of 37% phosphoric acid and adhesive. The pair of blocks of the same brand were cemented to each other with dual resin cement. The blocks were sectioned to obtain resin-resin sticks (1 x1 mm) and analyzed by microtensile bond testing. The bond strength values were statistically different, irrespective of the surface treatment performed, with highest values for Sinfony (43.81 MPa) and lowest values for Signum (32.33 MPA). The groups treated with the Nd:YAG laser showed the lowest bond strength values and power did not interfere in the results, both for Nd:YAG laser and Er:YAG. Controlled-air abrasion with Al203 is an efficient surface treatment method and the use of the Nd:YAG and Er:YAG lasers reduced bond strength, irrespective of the intensity of energy used.
Resumo:
The aim of this study was to investigate the effects of Er:YAG and Nd:YAG lasers on the shear bond strength of composite resin to dentin. The coronal portion of 56 human molars was divided into three parts, and the dentin thickness was standardized at 2 mm. A 3-mm hole was marked in the center of each tooth with sealing tape paper. The specimens (n = 14) were then divided into four groups: (1) acid etching + Single Bond (SB) (control), (2) acid etching + SB + Nd:YAG laser irradiation (before adhesive curing), (3) thermal etching with the Er:YAG laser + SB, and (4) thermal etching with the Er:YAG laser + SB + Nd:YAG laser irradiation (before adhesive curing). A composite resin cylinder was built into the delimited area for conducting the shear bond strength test on the universal testing machine. The means ± standard deviations were: group 1, 17.05 ± 4.15 MPa; group 2, 16.90 ± 3.36 MPa; group 3, 12.12 ± 3.85 MPa; and group 4, 12.92 ± 2.73 MPa. Groups 1 and 2 presented significantly higher values than groups 3 and 4. It was concluded that conventional etching with 37% phosphoric acid yielded significantly higher bond strength values compared to thermal etching with the Er:YAG laser. The Nd:YAG laser did not significantly influence the bond strength.
Resumo:
To evaluate the bond strength between two types of acrylic resin teeth and a microwave denture base resin after immersion in disinfectant solutions for 180 days. Eighty specimens made of acrylic resin teeth (Biotone and Biotone IPN) attached to a microwave polymerized denture base resin (Nature-Cryl MC) were divided into eight groups (n = 10) according to the treatment (distilled water-control, 2% chlorhexidine digluconate, 1% sodium hypochlorite and sodium perborate solution-Corega Tabs). The shear strength tests (MPa) were carried out using a universal testing machine with a 0.5 mm/min speed. Data analysis was performed using ANOVA and multiple comparison Student-Newman-Keuls post hoc test (α = 0.05). Biotone IPN showed similar results among the groups (distilled water, 8.25 ± 1.81 MPa; chlorhexidine, 7.81 ± 3.34 MPa; hypochlorite, 7.75 ± 3.72 MPa; and Corega Tabs, 7.58 ± 2.27 MPa, whereas Biotone showed significantly lower shear bond strength values for the groups immersed in Corega Tabs (5.25 ± 3.27 MPa) and chlorhexidine (6.08 ± 2.35 MPa). Soaking the dentures in 1% sodium hypochlorite could be recommended as a disinfectant solution for dentures fabricated with conventional acrylic resin denture teeth and microwave denture base resin. For dentures fabricated with IPN teeth and microwave denture base resin, all the soaking solutions evaluated in this study could be suggested to denture wearers.
Resumo:
The aim of this study was to evaluate the effects of simulated pulpal pressure (SPP) on the variation of intrapulpal temperature (ΔT) and microtensile bond strength (μTBS) to dentin submitted to an adhesive technique using laser irradiation. One hundred sound human molars were randomly divided into two groups (n = 50), according to the presence or absence of SPP (15 cm H2O). Each group was divided into five subgroups (n = 10) according to Nd:YAG laser energy (60, 80, 100, 120, 140 mJ/pulse). The samples were sequentially treated with the following: 37 % phosphoric acid, adhesive (Scotchbond Universal), irradiation with Nd:YAG laser (60 s), and light curing (10 s). ΔT was evaluated during laser irradiation using a type K thermocouple. Next, a composite resin block was build up onto the irradiated area. After 48 h, samples were submitted to microtensile test (10 kgf load cell, 0.5 mm/min). Data were analyzed by two-way ANOVA and Tukey tests (p = 0.05). ANOVA revealed significant differences for ΔT and TBS in the presence of SPP. For ΔT, the highest mean (14.3 ± 3.23 °C)(A) was observed in 140 mJ and without SPP. For μTBS, the highest mean (33.4 ± 4.15 MPa)(A) was observed in 140 mJ and without SPP. SPP significantly reduced both ΔT and μTBS during adhesive procedures, lower laser energy parameters resulted in smaller ΔT, and the laser parameters did not influence the μTBS values.
Resumo:
Objective: This confocal microscopy study evaluated the cement/dentin and cement/post interfaces along theroot canalwallswhenfiberglasspostswerebonded to dentin using different types of cements. Material & Methods: Thirty endodontically treated premolars were divided into 3 groups according to the adhesive materials used in the bonding procedure: Prime & Bond 2.1/Self Cure + Enforce, RelyX Unicem and RelyX Luting. Rhodamine B dye was incorporated in the luting materials for the cementation of the fiber glass posts (Exacto, Angelus) to dentin. Three transversal slices (apical, middle and coronal) were examined under confocal laser scanning microscopy. Statistical analysis was performed using the Kappa, Kruskal-Wallis and Dunnet tests, in a significance level of 5%. Results: The Prime & Bond 2.1/Self Cure + Enforce presented a uniform formation of tags in the dentin but gaps in the cement/dentin interface. The RelyX Unicem and RelyX Luting presented an adhesive interface with a fewer amount of gaps, but showed shorter tag formation than the Enforce system. All cements presented the same pattern of bubbles inside the cements. The RelyX Luting presented a greater amount of cracks inside the cement in comparison with the other cements in the coronal third, while no difference was observed between RelyX Unicem and Enforce. The RelyX Luting showed the lowest quantity of cement penetration into the post. Conclusion: In general, the quality of bonding interfaces of fiber posts luted to root canals was affected by both location and type of cement.
Resumo:
The test groups were experimental zirconia, Zirkonzahn zirconia, and Schuetz zirconia. Blocks of partially sintered zirconia were cut into disks (n=20) and then veneered with a feldspathic porcelain. Half of the specimens from each group (n=10) were incubated in 37°C water for 24 hours, and the other half were thermocycled. All the specimens were then subjected to shear testing. The fractured areas were analyzed with optical stereomicroscopy and classified as adhesive, cohesive, or an adhesive-cohesive failure. Spectral patterns were examined to detect bands related to the zirconia and feldspathic porcelain phases. The shear strength data were submitted to 2-way ANOVA. Results No significant differences in shear bond strength were observed among the 3 groups, regardless of whether or not the specimens were thermocycled. Adhesive failures were the most prevalent types of failure (70%). Raman spectra were clearly distinguished for all the materials, which showed the presence of tetragonal and monoclinic phases. Conclusions The controlled production of the experimental zirconia did not influence the results of the bond strength. Raman analysis suggested a process of interdiffusion by the presence of peaks associated with the zirconia and feldspathic ceramics.