383 resultados para Sistema híbrido de energia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work is to analyze the viability of incorporation in a microcomputer box of a nobreak with an ultracapacitor as energy storage device, substituting the conventional chemical battery. An advantage of this inclusion is cost reduction because a specific metallic or plastic frame won’t be necessary to protect the components of the nobreak; the microcomputer metallic frame offers the necessary protection for both equipments. Moreover, a large quantity of internal space of microcomputers box isn’t used, and is possible to use it to wrap up the nobreak. This work uses data about average power consumption of microcomputers; operation of switching mode power supplies for microcomputers; electrical and mechanical characteristics of ultracapacitors and operation of power circuits of nobreaks, with the purpose of present a study of energy storage capacity that an ultracapacitor should have to allow a safe switching off of a microcomputer in case of electrical network fail. It was noticed that the use of ultracapacitors is feasible to feed an 180 W load for 75 s, using a capacitive bank with sixteen ultracapacitors, with a total capacitance of 350 F and voltage of 10,8 V. The use of the proposed nobreak increases the reliability of the microcomputer by reducing the probability of user data losses in case of an electrical network fail, offering a high cost/benefit product. The substitution of the battery by an ultracapacitor allows a quick nobreak recharge, with low maintenance costs, since ultracapacitors have a lifetime bigger than batteries; beyond reducing the environmental impact, because they don’t use potentially toxic chemical compounds

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a study of the absorption refrigeration system and the modeling and evaluation of two cycles using the binary solutions water-lithium bromide and ammonia-water for an equipment to be used in small size plants like residences. The study and evaluation aims the complete understanding of all parts of the system and the influence of each one of them as well as the spread of the knowledge to raise the use of this type of equipment in all sizes in order to decrease the energetic consumption of plants of all scales and making viable the alternative sources. The study is done in each element of the cycle separately and in some auxiliary equipments required in the operation such as the main power source, the solar collector. The software used for modeling, with emphasis on thermal part, was the EES (Engineering Equation Solver), that permitted the thermal balance calculus and acquisition of the used fluids properties. The results obtained for the equipment shows the system is more complex than the widely used in business, however, it can be viable and represents an alternative to increase the energetic efficiency

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the field of the projects of hydraulic systems exists a lot of worries when we talk about the calculate of hydraulic pumps. In this case some facts must be considerate: length of tubes, fluid characteristics, height gauge, temperature, pressure, characteristics of tubes, flow required and others. For that mathematic calculates must be developed with the objective to optimize hydraulic pumps and agree to find an ideal machine (that don't requires more energy than necessary or less energy than it requires; that is the more critical case, cause exists the risk that the fluid pumped do not agree to become in your destiny). The wrong calculate of this machine can super-size its, bringing an excessive energy consumption. Actually it's an important subject because we are in the age of lack of energy what turn it more expensive. So the correct sizing of a hydraulic pump is connected with the fact that you have to uses the enough energy resources avoiding waste. The calculate of ideal pump in the pumping system is studied during years and a lot of specialists in this subject develop equations and theories to calculate its. Some researches study about this subject and all of them become to the same conclusion: to find the ideal pump we have to know the characteristics of fluid (cinematic viscosity), the required flow , overall yield (overall of motor x overall of pump) the high gauge or discharge pressure and the loss of repression. The pressure drop can be calculated with different theories: using Hazen-Williams, Darcy e Weisbach or Chézy (1775 - that starts the researches to calculate the pressure drop). Although the most used theory and what is most near to reality is the Darcy's equation. So, in this job the Darcy's equation were choice to calculate the drop pressure that consider what kind of flow we are studying: laminar or turbulent. The determination of the best pump to be used in the ... ( complete abstract click eletronic access below)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fossil fuels are the main energy sources of the modern industrial age. Very sophisticated processes have been developed to extract these resources, due to increased demand on a global scale, as the extraction of oil. However, the complexity of these processes can cause accidents such as the release of oil to seas and oceans. In this context, this study proposes to carry out the implementation of a system of information to charts of environmental sensitivity to oil and prepare maps of vulnerability to oil for the city of Caraguatatuba-SP. The implementation of the database with geographical information of coastal environments was appropriate to be provided by the Internet, allowing wide access of data. The maps of vulnerability are important tool developed for the Individual Emergency Plans, because they were developed in operational scale, appropriate to actions to combat oil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to make a qualitatively and ecologically evaluation of a compact cogeneration system that operates with synthesis gas obtained from a gasifier. Using the Eucalyptus Biomass as fuel, that passes through a wood gasifier (Drowndraft type) and supply the internal combustion engine. The compact cogeneration system is composed of two heat exchangers, an energy generator connected to an internal combustion engine and an absorption refrigeration system. The complete system is installed in the laboratory from the Energy Department at the University of Guaratinguetá. By the analysis related to the First and Second Thermodynamic Laws applied in this system, was possible to identify the mass flows in each point, energetic efficiency, irreversibility and exergetic efficiency. The components that have the biggest irreversibilities are the gasifier, followed by the internal combustion engine, which should be focused in future improvements. The system efficiency in energetic basis is 51,84% and in exergetic basis is 22,78%. Using the ecologic efficiency methodology was possible to identify the emissions rates, the pollution indicator associated to the combustion of the synthesis gas in the internal combustion engine. The ecologic efficiency considering the energectic analysis is 91,73%, while considering the exergetic analysis, 83,65%. It is concluded that the use of the synthesis gas in a compact cogeneration system is viable from the technical and ecological point of view, making possible to generate energy for isolated communities and promoting the decentralized electricity generation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proposed of scanning of an electrical industrial substation HV is associated with a segment of the Electrotechnical area and aims the study and preliminary application of digital technologies in the protection, control, measurement and automation maneuvers aimed at a Industrial Electrical System typical High Voltage. Well intended to supervision, protection and control of major electrical and thermal quantities involved in a substation, such as voltage levels, current, temperature, power factor, loads of transformers and circuit feeders, status of interlocking devices, switching equipment maneuvers, etc

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The materials designed to be used in electroluminescent (EL) devices construction are studied and improved since 1936. Great interests in the development of this kind of devices are mainly due to its low power consumption, flexibility, low cost and easy processing. One class of ELs devices with these characteristics are produced by employing a organic-polymeric/inorganic composite from a conductive polymer blend and an inorganic electroluminescent material (Zn2SiO4:Mn) dispersed in the polymeric matrix. This kind of device operates in d.c. or a.c. potentials, with EL of hundreds candela in the green region of the visible spectrum. However, few studies on the light emission were performed for these devices. In order to characterize devices made from composites, in this work is proposed a method of characterizing the electroluminescence associated with the impedance spectroscopy technique. To implement the technique of impedance spectroscopy was employ an experimental setup consisting of a source of a.c. voltage, an oscilloscope, and a reference resistor. Associated with this system, was use a photo diode and an analog electrometer to characterize the emitted light signal from the sample. The system was implemented allows characterization by impedance spectroscopy in the frequency range from 0.2 Hz up to 2 MHz and voltage amplitudes of 5 mV up to 20 kV. This system permits, at the same time, measurement of the RMS value of the luminance for devices in frequency range from 20 Hz up to 2 MHz. To test the system efficiency, an EL device was characterized showing analogous results to those reported in literature. By doing this, was demonstrated the efficiency of the system for electroluminescence characterization associated with the electrical characterization by impedance spectroscopy, for devices

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is proposed the usage of an Organic Rankine Cycle (ORC) along with waste heat recovery from an inconstant heat source. This method of waste heat recovery with intermittent heat source is part of a technical viability study. This paper also brings up the usage of thermal energy storage as heat source for the ORC. This paper is based on a heat treatment company study in which a natural gas furnace is explored. Data such as mass flow, temperature and specific waste gas heat from this furnace are used through calculations. Calculations are made also based on furnace cycles. This viability study considers a series of working fluids such as ammonia, benzene, R113 and R134a. Results point out that ORC with out thermal storage and using refrigerant fluid ammonia is the best alternative

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar energy can be considered the largest source of energy available on earth and has attracted in recent decades, attention and interest for its rational use. The use of energy sources in a sustainable manner is essential to the survival of future generations, due to the scarcity of natural resources and their exploitation in a disorderly way. Studies related to the applications of renewable sources becomes then relevant, given its great importance as regards the conscious use of resources provided by nature, with the least possible impact on it. The present study presents an evaluation of generation potential and feasibility of implementing a solar photovoltaic connected to the grid and connected to the roofs of some buildings of the Faculty of Engineering of Guaratinguetá - FEG, to supply the demand of electric energy consumption on campus and attempting to inject a possible surplus power generation in local power grid, increasing network capacity and reducing peak loads

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work, based in a patent request at INPI, protocol no. 020110035974, presents a system development using solar panels to supply the electricity demand required by punctual loads, without a storage unit or utility grid synchronism, through a control circuit that allows parallel operation with the power grid during low sunlight incidence periods. A study about solar panel construction and topologies for Power generation was done, in a atempt to evalute impacts in project. This development was modular, providing the system the possibility of power capacity expansion and load diversity as well, in an attempt to reduce the total energy requirements from the residential sector drained from the power grid along the day

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the increasing demand for electricity, the retraining of transmission lines is necessary despite environmental restrictions and crossings in densely populated areas to build new transmission and distribution lines. Solution is reuse the existent cables, replacing the old conductor cables for new cables with higher capacity power transmission, and control of sag installed. The increasing demand for electrical power has increased the electric current on the wires and therefore, it must bear out temperatures of 150°C or more, without the risk of the increasing sag beyond the established limits. In the case of long crossings or densely populated areas, sag is due to high weight of the cable on clearance. The cable type determines the weight, sag, height and the towers dimensions, which are the items that most influence the investment of the transmission line. Hence, to reduce both cost of investment and maintenance of the line, the use of a lighter cable can reduce both number and the height of the towers, with financial return on short and long term. Therefore, in order to increase the amount of transmitted energy and reduce the number of built towers and sag, is recommended in the current work substitute the current core material (steel or aluminium) for alternatives alloys or new materials, in this case a composite, which has low density, elevated stiffness (elasticity module), thus apply the pultruded carbon fiber with epoxy resin as matrix systems and perform the study of the kinetics of degradation by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC), according to their respective standards

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Brazilian government has convinced the world that ethanol deriving from sugar cane is a promissory means of sustainable fuel for vehicles. There is a great growth of ex vehicles , i.e, run both by ethanol and gasoline, due to competent automotive industries and e cient alcohol production technology. In 2009 and 2010 the ethanol production was 25.7 billion liters and 53.8% of sugar cane production was destined to alcohol production. Nevertheless, the sugar production also derived from sugar cane should increase in 2011. Brazil produced 33 million tons of sugar in the last harvest. With sugar cane on the rise production is arising new environmental problems. The harvest using mechanized cut besides improving the logistic transportation system leaves the generating residue in the eld. This residue is a mixture of straw, leavings and scrap of sugar cane named sugar cane crop residue and corresponds to 30% of biomass and can be burned and produce electricity by cogeneration. But the transport the sugar cane crop from the eld is expensive due costs involved in the transport system. This work aims to propose a formulation for the bales collecting problem from sugar cane eld to mill that minimize the costs involved in the transport system. The computational tests use the C++ language and an algorithm based on genetic algorithms techniques

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technologies are advancing at a pace so expressive that allow the increase of the power quality from generation until the distribution to end customers. This improvement has been made possible through the automation of the energy that follows to a better quality of the energy provided, a lower energy supply disruptions and a very short recovery time. The trend of today and the near future is the distributed energy generation. To keep the automated control of the chain, the presence of Smart Grids is needed and that will be the most efficient and economical way to manage the entire system. Within this theme, is going to be necessary analyze the electric cars that promise to promote a more sustainable transport because it doesn’t uses fossil fuels, and more healthy because it does not emit pollutants into the atmosphere. The popularization of this type of vehicle is estimated to happen in a few decades and the case study analyzing its influence on the demand of the electrical system is something that will be very important in the near future. This paper presents a study of the influence of the inclusion of charges refering to electric cars

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The minimization and mitigation of environmental impacts caused by the activities of organizations is increasingly becoming a key concern due to factors such as market demand, including suppliers and consumer markets, quality standards and even marketing strategies. The implementation of an EMS - Environmental Management System - allows the organization to achieve the level of environmental performance for its determined and promotes continuous improvement over time. This system consists of a schedule of activities, so as to eliminate or minimize impacts to the environment through preventive actions. It also provides a structured approach to set and achieve goals and objectives, and to establish procedures, work instructions and control, ensuring that the implementation of the policy can become reality. The objective of this work consists in planning a system using environmental management based on the ISO 14001 - standard internationally more widespread and accepted in the requirements to establish and operate an EMS - the Central Library, UNESP, Rio Claro / SP to stimulate the quest for continuous improvement and sustainability in the educational institution. For making the diagnosis of this planning was used the PDCA methodology, suggested by the standard, as well as all requirements for compliance. The results show that the benefits that the organization will receive involve reducing expenses and cost of energy and water, and improve the organization's reputation before the whole university and other educational institutions, reaching about three thousand people on university

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, research on energy harvesting has increased substantially. Many researchers have concentrated their efforts to find the best configuration for these systems and to optimize their output power. In the process of energy harvesting, the electric energy is obtained by converting mechanics energy created by an environment vibration source by a transducer, for example, a thin piezoceramic film. That vibration source is, for example, a beam suffering some mechanic force able to generate a vibration in it, an oscillating beam is the best properly used example. Different mechanisms of electromechanical coupling have been developed to harvesting devices, and a particular interest has been given to the use of models that transform the mechanical vibration into electrical current using a piezoelectric element. In this paper we propose a model to energy harvesting from vibrations, from an oscillating beam, including non-linearities in the piezoelectric coupling and a non-ideal excitation in the material. From this model, it was developed a system to obtain some results about the harvested power by the material. It was demonstrated that the power captured was influenced by the effect of the nonlinearities of the piezoelectric coupling, modifying the system dynamic behavior