377 resultados para Físico-química
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
In materials science, the search for technological improvements have become one of the main subject of study of researchers. This is especially true in the case of materials with reduced sizes, in the nanometer scale. Important phenomena to be studied in these cases are the desorption and adsorption on two-dimensional materials, such as graphene. These phenomena are of great importance in the study of interactions between organic films, synthesis or catalysis of reactions on surfaces and even in the creation of nanoscale devices [1, 2, 3, 4]. Between the most important topics related to these phenomena are the storage of gases in low-dimensional systems and the study of nanostructured fuel cells or batteries. In this context we used two different parametrizations for the reactive force field ReaxFF to study the potential barriers and reaction barriers of our system. First we made a study about the Reaction Barriers and Energy Barriers for bonds between graphene and the following atoms: sulfur, fluorine, hydrogen, nitrogen and oxygen. It is important to have this information in order to make it possible to understand how these atoms react with the graphene sheet. Subsequently, we calculate reaction barriers for mixed structures where fluorine is a fixed element bonded to graphene and other element is simultaneously bonded to graphene. This other element (N, O, H or S) is varied in its possible relative positions (ortho, meta and para in relation to fluorine in either: the same side and in the opposite side of the graphene membrane)
Resumo:
Non-intrusive methods of diagnosis, such as spectral analysis of the radiation emitted by the system, have been used as a viable alternative for determining the temperature of combustion systems. Among them, the determination of temperature by natural emission spectroscopy has the advantage of requiring relatively simple experimental devices. Once Chemiluminescent species are formed directly in the excited state, the collection and recording of radiation emission spectrum is enough to determine the temperature (CARINHANA, 2008). In this study we used the process of making direct comparisons between the experimental spectra obtained in the laboratory from the plasma of alcohol, and the theoretical spectra plotted from a computer program developed at the IEAv. The objective was to establish a fast and reliable method to measure the rotational temperature of the radical C2*. The results showed that the temperature of the plasma, which in turn can be taken as the rotational temperature of the system, is proportional to the pressure. The temperature values ranged from ca. 2300 ~ 2500 K at a pressure of 19 mmHg to 3100 ~ 3500 K for the pressure of 46 mmHg. The temperature values are somewhat smaller when we consider the theoretical spectrum as a Lorentzian curve. The overlap of the spectra was better when using the profile curve, but still were not exactly superimposed. The solution to improve the overlap of the theoretical with the experimental spectra is the use of a curve that has the convolution of two profiles analyzed: Lorentzian and Gaussian. This curve is called the Voigt profile, which will also be implemented by programmers and studied in a next work
Resumo:
Currently, there has been a growing concern for men and women with the appearance of the face and body, driven primarily by aesthetic standards set by the media. For this, the pharmaceutical and cosmetic industries have conducted numerous research projects aiming at the development of formulations that mitigate the aging and some skin disorders such as hipercromies. One of the most frequent pathologies of skin is melasma, a manifestation of hyperpigmentation caused by hipermelanogenesis symmetrical and progressive, caused usually by hormonal irregularities, exposure to sunlight and genetic factors. In addition to sunscreen, the treatment is indicated the use of depigmenting substances, among them the kojic dipalmitate (DK), which is cleaved into kojic acid (5- hydroxy-2-hydroxy-methyl-4H-piran-4-one) by esterase after absorption by the skin cells. The kojic acid inhibits the action of tyrosinase as a chelator of ions and promotes the reduction of eumelanin and its precursor monomer. To promote a controlled release and improve the stability of the system, the DK can be incorporated into multiple emulsions, that is, complex systems composed of two emulsifications, where the two types of emulsions (W/O and O/W or O/W and W/O) exist simultaneously, forming emulsions of type W/O/W or O/W/O. This work aimed to incorporate the DK in emulsion W/O/W, physical-chemical systems obtained and to evaluate the antioxidant and depigmenting action in vitro of the developed formulations. The physico-chemical characterization was performed by microscopic analysis, quantification and size distribution, determination of pH, conductivity, zeta potential and bioadhesive test of the formulations. The droplet size in accordance with the use of light microscopy and dynamic light scattering is approximately 1μm. The pH, electrical conductivity and bioadhesion have not changed with the addition... (Complete abstract click electronic access below)
Resumo:
Infrared spectroscopy (IR spectroscopy) explores the infrared region of the electromagnetic spectrum. Like any other spectroscopic technique, it can be used to identify a compound or the composition of investigate a sample. Spectroscopy (IR) is a very important technique in qualitative chemical analysis, widely used in the chemistry of natural products, organic synthesis and transformations. In this work we study of the theoretical foundations of infrared spectroscopy, the different vibration modes, experimental techniques, and the identification and characterization of solids. Were studied as applications: their use in thermograph and remote sensing satellites
Resumo:
In the eld of synthetical materials, often called in the literature as organic/molecular conductors or charge-transfer salts, the most prominient examples are the quasi onedimensional systems (TMTTF)2X and (TMTSF)2X, where TMTTF, TMTSF and X refers to tetrametiltetratiafuvaline, tetrametiltetraselenafuvaline and a monovalent anion (X = PF6
Resumo:
A leishmaniose tegumentar é causada pela picada da fêmea dos insetos flebotomíneos. As lesões podem evoluir de pápulas para úlceras, que apresentam fundo granuloso e bordas infiltradas, as quais são indolores, podendo ser únicas ou múltiplas. Trata-se de uma doença negligenciada e o investimento em seu tratamento é desprezível. Até hoje, são empregados no tratamento medicamentos a base de antimonial pentavalente, além de outros fármacos como pentamidina, anfotericina B, paromomicina, imidazoquinolina, antifúngicos, como o fluconazol (FLU). As microemulsões (MEs) melhorarem a solubilidade e estabilidade dos fármacos, além de proporcionarem ação prolongada, vetorização diferenciada para determinados tecidos ou órgãos do organismo. Este trabalho teve como objetivos desenvolver e caracterizar MEs contendo FLU, caracterizar estruturalmente por meio de análises de microscopia de luz polarizada, análise do tamanho das gotículas, análise do perfil de textura e avaliação da bioadesão. Para o estudo de estabilidade foram empregados ensaios de avaliação visual e determinação do pH. Quanto aos ensaios biológicos in vitro, foram realizados ensaios colorimétricos das amostras visando verificar se o sistema desenvolvido permite a potencialização do poder leishmanicida do FLU contra as formas promastigotas da Leishmania amazonensis. Pelo diagrama de fases observou fases líquido-cristalinas confirmadas pela microscopia de luz polarizada, e foram selecionadas três formulações: uma SLT e duas SVT. Todos os ensaios de caracterização estrutural para a F2 sofreu variação quando acrescentou o fármaco, exceto para o potencial zeta, difração de raios X e bioadesão. Não houve alteração no ensaio estabilidade físico-química no período analisado. Os ensaios biológicos in vitro evidenciaram, nas condições metodológicas, inefetividade do sistema contra as formas promastigotas de L. amazonensis
Resumo:
In the last decades it has been observed a substantial developing of the electrical energy demand in the societies all over the World. In consequence the electrical energy distribution companies are increasing the quantity of electrical energy through the electrical energy conductor cables, which had grown the sag in the towers of energy transmission. Furthermore, the construction of more transmission towers brings a lot of troubles due environmental protection laws. In this way, looking forward to increase the quantity of electrical energy transmitted through electrical cables conductors, reduce the need of constructing new transmission towers and the sag in them, we suggest in this work the replace of the traditional core of the conductors cables commonly used, made of steel, by a core made by a composite material, which one is made by carbon fibers pultruded with polymeric resins as matrix. In a order to evaluate if the resins more commonly used in structural composites can be applied as matrix to make possible to use the composite material as a core, we made carbon fibers systems pultruded with epoxy, phenolic and polyester resins as matrix and a mechanic and physic-chemistry characterization was done on the systems by Tensile and Poisson tests, differential sprobe calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transformed infrared spectroscopy (FTIR), following their correspondents standards
Resumo:
In this work, the dissociation dynamics of heteronuclear diatomic molecules is investigated by means of the classical driven Morse oscillator. The interaction of the molecule and the laser field is represented through the product of the molecule dipole function and the electric field of the laser. This interaction may lead to the breaking of the chemical bound, that is, to the dissociation of the molecule. The work was developed in two parts. In the first part, we studied the dissociation as a function of the range of the permanent dipole. In the second part, we maximized the dissociation probability manipulating the parameters of the external field. We have observed that the dissociation can be controlled by means of variations of parameters associated with the range of the permanent dipole
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)