485 resultados para Dental enamel. bracket. debonding
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To assess the cytotoxicity of 35% hydrogen peroxide (HP) bleaching gel applied for 15 min to sound or restored teeth with two-step self-etching adhesive systems and composite resin. Materials and Methods: Sound and restored enamel/dentin disks were stored in water for 24 h or 6 months + thermocycling. The disks were adapted to artificial pulp chambers and placed in compartments containing culture medium. Immediately after bleaching, the culture medium in contact with dentin was applied for 1 h to previously cultured odontoblast-like MDPC-23 cells. Thereafter, cell viability (MTT assay) and morphology (SEM) were assessed. Data were analyzed by two-way ANOVA and Tukey's test (a = 5%). Results: In comparison to the negative control group (no treatment), no significant cell viability reduction occurred in those groups in which sound teeth were bleached. However, a significant decrease in cell viability was observed in the adhesive-restored bleached groups compared to negative control. No significant difference among bleached groups was observed with respect to the presence of restoration and storage time. Conclusion: The application of 35% HP bleaching gel to sound teeth for 15 min does not cause toxic effects in pulp cells. When this bleaching protocol was performed in adhesive-restored teeth, a significant toxic effect occurred.
Resumo:
Purpose: This study evaluated the effect of 10% sodium ascorbate (10SA), in gel (10SAg) or aqueous solution (10SAs) formulations, on fracture resistance of endodontically treated tooth submitted to dental bleaching procedures with 15% hydrogen peroxide associated with titanium dioxide (15HP-TiO2) nanoparticles and photoactivated by LED-laser. Material and methods: Forty maxillary premolars were endodontically-treated and embedded in acrylic resin up to the cement-enamel junction. The specimens were divided into four groups (n=10): G1 (negative control): no bleaching, coronal access restored with composite resin; G2 (positive control): three dental bleaching sessions using 15HP-TiO2 and LED-laser photoactivation and restored with composite resin (positive control); G3 (10SAg): similar procedures to G2, but applied 10SA, in gel formulation, for 24 hours before restoration; G4 (10SAs): similar procedures to G3, but applied 10SA, in aqueous solution formulation. The 15HP-TiO2 was applied on buccal and lingual surfaces of the crown tooth and inside the pulp chamber and photoactivated by LED-laser. Between each bleaching session, the teeth were maintained in artificial saliva, at 37oC, for 7 days. In sequence, the teeth were submitted to fracture resistance testing using an eletromechanical machine test. The data was analyzed using Kruskal Wallis test (p = 0.05) Results: There are no differences significant among the groups in relation to fracture resistance of endodontically treated teeth (p>0.05). Conclusions: The use of 10% sodium ascorbate, in gel or aqueous solution formulations, did not interfered on the fracture resistance teeth after dental bleaching using 15HP-TiO2 and LED-laser photoactivation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
OBJECTIVE: The aim of this study was to assess the time spent for direct (DBB - direct bracket bonding) and indirect (IBB - indirect bracket bonding) bracket bonding techniques. The time length of laboratorial (IBB) and clinical steps (DBB and IBB) as well as the prevalence of loose bracket after a 24-week follow-up were evaluated. METHODS: Seventeen patients (7 men and 10 women) with a mean age of 21 years, requiring orthodontic treatment were selected for this study. A total of 304 brackets were used (151 DBB and 153 IBB). The same bracket type and bonding material were used in both groups. Data were submitted to statistical analysis by Wilcoxon non-parametric test at 5% level of significance. RESULTS: Considering the total time length, the IBB technique was more time-consuming than the DBB (p < 0.001). However, considering only the clinical phase, the IBB took less time than the DBB (p < 0.001). There was no significant difference (p = 0.910) for the time spent during laboratorial positioning of the brackets and clinical session for IBB in comparison to the clinical procedure for DBB. Additionally, no difference was found as for the prevalence of loose bracket between both groups. CONCLUSION: the IBB can be suggested as a valid clinical procedure since the clinical session was faster and the total time spent for laboratorial positioning of the brackets and clinical procedure was similar to that of DBB. In addition, both approaches resulted in similar frequency of loose bracket.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: The aim of this study was to investigate the effect of hydrogen peroxide gels with different concentrations (20%, 25%, 30%, and 35%) on enamel Knoop microhardness (KNIT) as well as on changes in dental color (C).Methods: Cylindrical specimens of enamel/dentin (3-nun diameter and 2-nun thickness) were obtained from bovine incisors and randomly divided into six groups (n=20), according to the concentration of the whitening gel (20%, 25%, 30%, 35%, control, thickener). After polishing, initial values of KNH0 and color measurement, assessed by spectrophotometry using the CIE L*a*b* system, were taken from the enamel surface. The gels were applied on the enamel surface for 30 minutes, and immediate values of KNHi were taken. After seven days of being stored in artificial saliva, new measures of KNH7 and color (L-7* a(7)* b(7)*, for calculating Delta E, Delta L, and Delta b) were made. Data were submitted to statistical analysis of variance, followed by Tukey test (p<0.05).Results: Differences in gel concentration and time did not influence the microhardness (p=0.54 and p=0.29, respectively). In relation to color changes, Delta E data showed that the 35% gel presented a higher color alteration than the 20% gel did (p=0.006).Conclusion: Bleaching with 35% hydrogen peroxide gel was more effective than with the 20% gel, without promoting significant adverse effects on enamel surface microhardness.
Resumo:
Purpose: To evaluate the ability of calcium-containing prescription-strength fluoride (F) toothpastes in preventing enamel erosion under low salivary flow simulating conditions. Methods: Enamel and dentin bovine specimens were assigned to the following groups: A - placebo; B - 1,100 ppm F/NaF (Aquafresh Advanced); C - 5,000 ppm F/NaF (Prevident 5000 Booster); D - 5000 ppm F/NaF+calcium sodium phosphosilicate (Topex Renew); and E - 5,000 ppm F/NaF+tri-calcium phosphate (Clinpro 5000). Specimens were positioned in custom-made devices, creating a sealed chamber on the surface, connected to peristaltic pumps. Citric acid was injected into the chamber for 2 minutes, followed by artificial saliva (0.05 ml/minute), for 60 minutes, 4x/day, for 3 days. Aquafresh was also tested under normal salivary flow (0.5 ml/minute), as reference (Group F). Specimens were exposed to the toothpastes for 2 minutes, 2x/day. After cycling, surface loss (SL) and concentration of loosely- and firmly-bound F were determined. Data were analyzed by ANOVA. Results: Group A (placebo) presented highest surface loss (SL), while Group F had the lowest, for both substrates. For enamel, none of the dentifrices differed from Group B or among each other. For dentin, none of the dentifrices differed from Group B, but Group E showed greater protection than Group C. Group E presented the highest F concentrations for both substrates, only matched by Group D for firmly-bound fluoride on enamel. All fluoridated dentifrices tested reduced SL, with no additional benefit from higher F concentrations. Some formulations, especially Clinpro 5000, increased F availability on the dental substrates, but no further erosion protection was observed.
Resumo:
Since bleaching has become a popular procedure, the effect of peroxides on dental hard tissues is of great interest in research. Purpose: The aim of this in vitro study was to perform a qualitative analysis of the human enamel after the application of in-office bleaching agents, using Scanning Electron Microscopy (SEM). Materials and Methods: Twenty intact human third molars extracted for orthodontic reasons were randomly divided into four groups (n=5) treated as follows: G1- storage in artificial saliva (control group); G2- four 30-minute applications of 35% carbamide peroxide (total exposure: 2h); G3- four 2-hour exposures to 35% carbamide peroxide (total exposure: 8h); G4- two applications of 35% hydrogen peroxide, which was light-activated with halogen lamp at 700mW/cm2 during 7min and remained in contact with enamel for 20min (total exposure: 40min). All bleaching treatments adopted in this study followed the application protocols advised by manufacturers. Evaluation of groups submitted to 35% carbamide peroxide was carried out after two time intervals (30 minutes and 2 hours per session), following the extreme situations recommended by the manufacturer. Specimens were prepared for SEM analysis performing gold sputter coating under vacuum and were examined using 15kV at 500x and 2000x magnification. Results: Morphological alterations on the enamel surface were similarly detected after bleaching with either 35% carbamide peroxide or 35% hydrogen peroxide. Surface porosities were characteristic of an erosive process that took place on human enamel. Depression areas, including the formation of craters, and exposure of enamel rods could also be detected. Conclusion: Bleaching effects on enamel morphology were randomly distributed throughout enamel surface and various degrees of enamel damage could be noticed. Clinical significance: In-office bleaching materials may adversely affect enamel morphology and therefore should be used with caution.
Resumo:
Several pathologies have been diagnosed in children of hypertensive mothers; however, some studies that evaluated the alterations in their oral health are not conclusive. This study analyzed the salivary gland activity and dental mineralization of offsprings of spontaneously hypertensive rats (SHR). Thirty-day-old SHR males and Wistar rats were studied. The salivary flow was evaluated by injection of pilocarpine, the protein concentration and salivary amylase activity, by the Lowry method and kinetic method at 405 nm, respectively. Enamel and dentin mineralization of the mandibular incisors was quantified with aid of the microhardness meter. The results were analyzed by the ANOVA or Student's t test (p<0.05). It was noticed that the salivary flow rate (0.026 mL/min/100 g ± 0.002) and salivary protein concentration (2.26 mg/mL ± 0.14) of SHR offspring were reduced compared to Wistar normotensive offspring (0.036 mL/min/100 g ± 0.003 and 2.91 mg/mL ± 0.27, respectively), yet there was no alteration in amylase activity (SHR: 242.4 U/mL ± 36.9; Wistar: 163.8 U/mL ± 14.1). Microhardness was lower both in enamel (255.8 KHN ± 2.6) and dentin (59.9 KHN ± 0.8) for the SHR teeth compared to the Wistar teeth (enamel: 328.7 KHN ± 3.3 and dentin: 67.1 KHN ± 1.0). These results suggest that the SHR offspring are more susceptible to development of pathologies impairing oral health, once they presented lesser flow and salivary protein concentration and lower dental mineralization.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the ability of conventional toothpastes (1100 ppm F) supplemented with sodium trimetaphosphate (TMP) in demineralization. Blocks of enamel were selected and then divided into seven experimental groups of 12: toothpaste without F and TMP (placebo), toothpaste with 1100 ppm F (1100), and toothpaste with 1100 ppm F supplemented with TMP-1 % (1100 1 % TMP), 3 % (1100 3 % TMP), 4.5 % (1100 4.5 % TMP), 6 % (1100 6 % TMP), and 9 % (1100 9 % TMP). Blocks were subjected to five pH cycles (demineralizing/remineralizing solutions) at 37 °C and treated with toothpaste slurries twice daily, after which the blocks were maintained for 2 days in fresh remineralizing solution. Following treatments, surface hardness (SHf) and cross-sectional hardness were determined for calculating the integrated loss of subsurface hardness (ΔKHN). The fluoride present in the enamel was also measured. The SHf and ΔKHN measurements showed that supplementation with 3 % TMP was the most effective (p < 0.001) and showed greater concentration of F in the enamel (p < 0.001). Addition of 3 % TMP to a conventional toothpaste (1100 ppm F) showed greater efficacy in reducing enamel demineralization. Fluoride toothpastes containing trimetaphosphate possess good anticaries potential required to reduce the prevalence of dental caries in high-risk patients.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Superficial stains and irregularities of the enamel are generally what prompt patients to seek dental intervention to improve their smile. These stains or defects may be due to hypoplasia, amelogenesis imperfecta, mineralized white spots, or fluorosis, for which enamel microabrasion is primarily indicated. Enamel microabrasion involves the use of acidic and abrasive agents, such as with 37% phosphoric acid and pumice or 6% hydrochloric acid and silica, applied to the altered enamel surface with mechanical pressure from a rubber cup coupled to a rotatory mandrel of a low-rotation micromotor. If necessary, this treatment can be safely combined with bleaching for better esthetic results. Recent studies show that microabrasion is a conservative treatment when the enamel wear is minimal and clinically imperceptible. The most important factor contributing to the success of enamel microabrasion is the depth of the defect, as deeper, opaque stains, such as those resulting from hypoplasia, cannot be resolved with microabrasion, and require a restorative approach. Surface enamel alterations that result from microabrasion, such as roughness and microhardness, are easily restored by saliva. Clinical studies support the efficacy and longevity of this safe and minimally invasive treatment. The present article presents the clinical and scientific aspects concerning the microabrasion technique, and discusses the indications for and effects of the treatment, including recent works describing microscopic and clinical evaluations.