300 resultados para Resíduos sólidos : Reciclagem
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The competitiveness among global markets, the constant need for reducing manufacturing costs and also the growing environmental commitments are fueling the development of techniques for recovery residual parts generated by industrial processes. Among the various areas of a company, we highlight those that involve the processing of raw materials derived from oil, such as polymers (resins), which may take centuries to decompose in the environment and also present as a economic and environmentally strategic point. Thus, this study would examine the recovery of waste polypropylene, from the injection process of a major multinational in the field of home appliances through the recycling by a process comprising the milling, extrusion and chipping of waste material. Easy to deploy, this proposal aims to reduce levels negligible disposal (scrap) of these residues as well as the reintegration of the production process into pieces no visual and no structural importance, aimed at cutting costs and reducing environmental impacts caused. After the survey data in kilograms of waste material generated in a given period of time, and the study of changes in material properties, it would enable the reuse steadily in the injection process
Resumo:
In this work polymeric composites reinforced with cotton fibers, from the textile industry, were developed in order to manufacture printed circuit boards. It was used expanded polystyrene (EPS) as a thermoplastic matrix by melting it. For the obtention of 10% and 15% of fiber volume fraction in cotton fibers composites, it was used wasted cotton fibers as an incentive of recycling and reusing of the domestic and industrial wastes as well as for Expanded Polystyrene(EPS). The mechanical properties of the composites were evaluated by tensile and flexural strength from standardized test methods. Composites were characterized by a Scanning Electron Microscopy (SEM), Thermogravimetry (TG/DTG), Differential Scanning Calorimetry (DSC) and dielectric analysis. The analysis of the results showed that fiber in the composite directly influenced in the thermal and mechanical properties
Resumo:
This project aimed to analyze the feasibility of the methane yield associated to the anaerobic digestion of brewery residues, checking whether the energetic balance of the system is favorable. The methane yield efficiency was calculated for the parameters of two papers that treated solids with a particle-size <1mm. Theses solids are not degraded in conventional treatment systems. Calculations were based in the reactions of anaerobic degradation of the macromolecules that compose brewery residues, considering the theoretical production and the effective production of methane. The results were 50.44% and 52.86%. Regarding to the energy balance of the anaerobic treatment, we noted the high influence of the selection and operating regime of electrical equipment over the potential energy. The best situation, in which the energetic self-sufficiency was reached, was observed when using the mixer under an intermittent regime (1min/h), without employing the heating recirculator, for the maximum organic loading of 4.0 gVS/L.day (days 248-258). In this case, the system would generate an amount of energy equal to 0.0356 kWh/day, able to overcome the energy required by the equipment in about 6.5 times. Moreover, we also noted the interference of the application of different solid loadings in the reactors, once the application of the higher organic load generated 5 times more energy than the application of the smaller one
Resumo:
In this work polystyrene composites reinforced with recycled sisal fibers were processed, in order to apply in the manufacture of printed circuit boards. A thermoplastic matrix of recycled polystyrene was used, this material came from waste expanded polystyrene (EPS) used in appliance's packages. Composites were prepared with 15% and 25% of sisal fibers. To obtain the composites, wasted EPS and natural sisal fibers were chosen, to encourage recycling and reuse of household waste and also the use of renewable resources. The composites were analyzed by standard tensile and flexural test, in order to verify the mechanical properties of the material. The characterization of the composite was done by scanning electron microscopy (SEM) , thermogravimetry (TGA / DTG) , differential scanning calorimetry (DSC) and dielectric analysis . The analysis of the results showed that the percentage of fibers in the composite influences directly the thermal and mechanical properties. Plates with a lower percentage of fibers showed superior properties at a higher percentage. The composite material obtained is easy to process and it's use is feasible for the confection of printed circuit boards, considering it's mechanical, thermal and insulative properties
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
A gestão de resíduos em distribuidoras de eletricidade é bastante complexa, pois enquadram-se em vários tipos (valorizados ou não) e gerados em grande quantidade. Em 2009, a AES Eletropaulo gerou quase quatro mil toneladas de resíduos não perigosos, subdivididos em 30 tipos. Uma divisão por materiais, após desmontagem e separação dos diferentes materiais contidos nos fios, cabos, chaves, isoladores com ferragem e para-raios, subiria o valor da venda em R$ 600 mil. Isso geraria cerca de 214 toneladas de porcelana que, moídas, poderiam substituir as 210 toneladas de brita compradas anualmente pela concessionária para uso em subestações. Cerca de 160 toneladas de porcelanas intactas poderiam ser utilizadas na confecção de gabiões para contenção de encostas. Além disso, peças de ferro galvanizado poderiam ser decapadas e novamente galvanizadas para reaproveitamento.