384 resultados para Nutriente limitante
Resumo:
Pós-graduação em Serviço Social - FCHS
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Pós-graduação em Aquicultura - FCAV
Resumo:
Research has been conducted to identify the best nitrogen (N) rate for maize in most diverse types of soil management. However, there is no agreement on the results, once the dynamic of N is influenced by soil management and cover crops. This study evaluated dry mass production and nutrient uptake by cover crops, agronomic parameters and grain yield of maize in response to soil management and N rates. Field trials were carried out in Selvíria, Mato Grosso do Sul State, Brazil, in the growing seasons of 2009/2010 and 2010/2011, on a clayey Rhodic Haplustox (20º 20' S and 51º 24' W, 340 m asl). Thirty-six treatments were established with four replications, in a randomized blocks design, with the combination of cover crops (millet, Crotalaria juncea and millet + Crotalaria juncea), soil management systems (tillage with chisel plow + lightweight disking, heavy disking + lightweight disking, and no-tillage) and topdressing N rates (0, 60, 90 e 120 kg ha-1 - urea as source). Maize hybrid DKB 350 YG® was used and N applied at stage V5 (fifth expanded leaf). A linear increase with the increase of N rates was observed for chlorophyll leaf index, leaf N content, ear length and diameter, and grain weight and yield. Previously grown sunn hemp and millet + sunn hemp grown, associated with 120 kg ha-1 N for maize, induced a higher grain yield after two growing seasons.
Resumo:
The objective of this work was to evaluate the responses of Haematococcus pluvialis cells to the carotenogenesis induction process, under light and nutrition stress. Cells were acclimated during 15 days in WC medium, with aeration with synthetic, filtered atmospheric air and flow rate of 100 mL min-1, light intensity of 50 µmol photons m-2 s-1, photoperiod of 12 hours, and temperature of 23ºC. The following two treatments were compared: cultivation under the described conditions, but with increase of light intensity up to 350 µmol photons m-2 s-1 ; and cultivation under the same conditions as the previous treatment, but with aeration containing 4% CO2. The treatments were done in triplicate, during ten days. With the addition of CO2 and the increment in lighting, an increase was observed in the carotenoids/chlorophyll ratio and cell biomass. Cells stopped dividing on the second day of stress, when nitrate became limiting, and significantly increased their biovolume. The excretion of organic carbon and the concentration of astaxanthin increase in response to the addition of CO2. Stress by light intensity combined with CO2 addition optimizes carotenogenesis in H. pluvialis and increases astaxanthin production.
Resumo:
The objective of this study was to evaluate the growth, the morphological alterations and the mineral composition of brazilwood (Caesalpinia echinata) plants caused by mineral nutrients omission in a green house experiment. The experimental units were distributed in the green house according to a completely random design. The treatments, each repeated five times, were the following : check (natural soil), complete (N, P, K, Ca, Mg, S, B, Cu, Mn, and Zn) and a complete solution but for the omission of one of the nutrients in parenthesis. Each plot was represented by a plant growing in a 7 dm3 vase filled with Quartzarenic Neosol. The analyzed variables were the following: visual nutritional deficiency symptoms, plant height, stem diameter, shoot dry matter, stem, branches and leaves included, and leaf nutrients level. The omission of nitrogen limited plant growth in height and shoot biomass production. The first visual deficiency symptoms were those due to N omission followed by those caused by P, Ca, Mg, S, Cu, and Mn omissions. Later on the K and B deficiency symptoms became visible. The omission of a nutrient always caused its level in the leaves to be significantly lower than that found when it was not omitted.